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Amodel is developed to study the properties of a quantum computer that uses vibrational eigenstates
of molecules to implement the quantum information bits and shaped laser pulses to apply the
quantum logic gates. Particular emphasis of this study is on understanding how the different factors,
such as properties of the molecule and of the pulse, can be used to affect the accuracy of quantum
gates in such a system. Optimal control theory and numerical time-propagation of vibrational wave
packets are employed to obtain the shaped pulses for the gates NOT and Hadamard transform. The
effects of the anharmonicity parameter of the molecule, the target time of the pulse and of the
penalty function are investigated. Influence of all these parameters on the accuracy of qubit
transformations is observed and explained. It is shown that when all these parameters are carefully
chosen the accuracy of quantum gates reaches 99.9%. © 2004 American Institute of Physics.
#DOI: 10.1063/1.1791635$

I. INTRODUCTION

Feynman1 introduced the concept of a quantum com-
puter over 20 years ago. Since that time, sophisticated quan-
tum logic and error correction algorithms have been devel-
oped and are ongoing topics of intense research.2 For many
computational problems, the computational advantages of
quantum computing are astronomical when compared to the
familiar classical computer. Quantum computers are famous
for their ability to crack cryptographic codes, efficiently
search large databases, and easily simulate quantum systems.
Each of these problems scales exponentially with the size of
the system using a standard classical computer. The superpo-
sition principle in quantum mechanics effectively allows a
quantum computer to process exponentially large problems
using exponentially many paths through time.2 This extreme
‘‘parallelization’’ of computational work in a quantum com-
puter reduces the exponential scaling laws associated with
classical computing to linear scaling laws. The realization of
a quantum computer would revolutionize the computational
sciences:2 ‘‘Quantum computing would be to ordinary com-
puting what nuclear energy is to fire.’’

Two primary obstacles are associated with realizing a
quantum computer: !a" Identifying a physical system to rep-
resent quantum bits, and !b" implementing quantum logic
operations on these quantum bits. The first demonstration of
rudimentary quantum algorithms was performed using
liquid-state nuclear magnetic resonance !NMR"
spectroscopy.3 NMR is still at the forefront in terms of the
number of qubits !a ‘‘quantum bit’’ consisting of two states
!0% and !1%" that have been harnessed for running quantum
computing algorithms, setting the current world record at
seven. Unfortunately, this number is unlikely to grow beyond
ten or so due to the noise which accumulates in the NMR
signal as the size of the molecule increases. The qubits in
NMR are the nuclear spins of atoms, and the number of
qubits is equal to the number of atoms. A promising new
approach for realizing a quantum computer is based on using

the vibrational states of molecules to represent qubits.4 In
this approach, the number of qubits is proportional to the
number of vibrational degrees of freedom which is given by
3N!6 for a N-atom molecule. The vibrational state ap-
proach has several advantages over NMR: !i" More qubits
can be realized using a N-atom molecule, !ii" the vibrational
states of molecules are stable !over the time scales of inter-
est" and no additional ‘‘refocusing’’ pulses are needed, !iii"
the number of qubits is not limited to ten, and !iv" by using
more vibrational states, it may be possible to represent quan-
tum information units having more than two states !i.e., !0%,
!1%, !2%, !3%,...". In the vibrational state approach, quantum
logic operations are performed by applying femtosecond in-
frared laser pulses optimized to induce the desired vibra-
tional transitions. This approach potentially meets all five of
DiVincenzo’s principal criteria,5 while additionally offering
an advantage of high-speed operation. It may be the technol-
ogy that will realize the dream of quantum computing one
day.

Several pioneering papers on this subject have been pub-
lished in recent years by Vivie-Riedle and co-workers.4,6,7
They studied theoretically a two-qubit system implemented
as two normal vibrational modes of the acetylene molecule
(C2H2). Two vibrational eigenstates in each normal mode
were chosen to represent the !0% and !1% states of each qubit.
A number of important aspects were clarified for C2H2 , in-
cluding the first prediction of optimally shaped pulses for
several key gate operations, creation of entangled qubit
states, investigation of decoherence sources, and proposals of
pathways for experimental realization. The particular choice
of acetylene (C2H2) was made mostly due to historic rea-
sons: the authors performed the coherent control studies of
C2H2 in their earlier work8 and had the potential energy sur-
face and the dipole-moment function for C2H2 available. It
remains unclear how good or bad the gas phase acetylene
molecule is in general for the purpose of quantum comput-
ing. There may be better choices. A question ‘‘How to choose
the best possible molecular medium for practical realization
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of a quantum computer?’’ has never yet been addressed in
the literature but will become important one day for those
who plan to set up the first experiment.

It is very likely that the first experimental proof-of-
principle study will start with simple one-qubit operations.
Therefore, in this paper we focus on a one vibrational degree
of freedom example !i.e., a one-qubit system". Instead of
attacking any particular molecule or any particular normal
mode in a chosen real world molecule, we consider a model
system where we are free to vary, in physically reasonable
ranges, several parameters of the molecule and the pulse. In
this way, we are able to model many different systems and
determine general trends that affect, for example, the maxi-
mum achievable accuracy of gate operations. The accuracy
!or fidelity" of gate operations is a very important issue in
the context of quantum computing and it was relatively
low (&70%) in the first paper on C2H2 .4 That may be the
reason why many scientists were quite skeptical about
molecular eigenstates as a valid approach to quantum com-
puting. Later, a new method for optimizing the pulse shape
was developed with special emphasis on application to
quantum computing6,9 and a dramatic improvement in gate
fidelity (&90%) was achieved. However, this still may not
be enough to safely perform tens of gates, one after another,
as a part of a quantum computing algorithm.10 !This situation
is very different from all other fields of quantum dynamics
where the principle of optimal control has been employed. In
almost any other application based on pulse shaping, a slight
increase in the ratio of the desired to undesired events is
considered a big success." Therefore, many scientists who
discuss the possibility of a practical realization keep asking
the question: ‘‘Is it possible, in principle and in practice, to
improve the gate fidelity, by how much and how?’’ In a recent
paper published by Rabitz and co-workers, a new way of
looking at this problem on very general grounds was
presented.11 Their work shows that in principle all solutions
of the optimal control problem are perfect, but access to
some of them can be limited by various control constraints.
This important finding brings more optimism into the overall
field of optimal control and, in particular, makes the molecu-
lar vibrations approach to quantum computing look very
promising. In this paper, we use a complementary approach
and perform several numerical ‘‘experiments’’ to determine
quantitatively to what extent the experimentally relevant
constraints limit the achievable accuracy of quantum gates
and what can be learned by relaxing those constraints. Re-
sults of this study should be especially helpful in designing
an experimental scheme for the practical demonstration of
quantum information processing using the vibrational eigen-
states of molecules.

This paper is organized as follows: In Sec. II optimal
control theory is reviewed as applied to the quantum com-
puting problem. In Sec. III we describe our model system,
calculate the optimal pulses for the gates NOT and Had-
amard rotation, and discuss advantages of the numerical
method used here for the time propagation. In Sec. IV we
demonstrate the effect of the anharmonicity parameter and
several constraints on the achievable accuracy of gates.
Some conclusions are given in Sec. V.

II. OPTIMAL CONTROL THEORY

We follow the methodology of Vivie-Riedle6,7 which, in
turn, is based on the iterative method of Rabitz.12 Although
this technique has already been briefly described and em-
ployed in the literature, the final equations #Eqs. !6"–!8" be-
low$ were not published. For the purpose of completeness
and also in order to introduce the notation, we briefly present
them here.

The traditional purpose of optimal control theory is to
calculate the shape of the laser pulse '(t) which induces the
maximum transfer of probability from the given initial vibra-
tional state ( i to a chosen final state ( f within the time
interval T , called the target time. This is achieved by maxi-
mizing the objective functional, defined as12

J f i)!*+ i!T "!( f%!2!"
0

T
,!'! t "!2dt

!2 Re# *+ i!T "!( f%"
0
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*+ f! t "!

i
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Here + i(t) is the time-dependent wave function of the sys-
tem driven by the laser pulse '(t) from its initial state + i(t
#0)#( i to the target state + i(t#T)#( f . The first term in
the functional !1" serves to maximize the population transfer
and the second term is needed to minimize the energy of the
laser field. The last term is used to satisfy the time-dependent
Schrödinger equation for molecule-light interaction; there
H0(r)#! 1/2m 0r"V(r) is the time-independent molecular
Hamiltonian and .(r) is the molecular dipole-moment func-
tion. The *+ f(t)! plays the role of a Lagrange multiplier,
while the multiplicative term *+ i(T)!( f% !Ref. 12" is impor-
tant to decouple the boundary conditions for + i(t) and + f(t).
The function , is a penalty function, used also for the
smooth switching-on and switching-off of the pulse13

,#,! t "#
,0
s! t " , !2"

where ,0 is a constant penalty factor, s(t) plays a role of a
pulse envelope and can be any smooth function. Everywhere
through this paper, except Sec. IVC, we use a simple previ-
ously proposed function13

,0#1, s! t "#sin2% 1
t
T & . !3"

Such a formulation of the optimal control problem can be
applied to a case when we want to optimize one chosen
transition, for example, to transfer the population from one
vibrational state to another: !v#0%→!v#1% . Here ( i#!0%
and ( f#!1%. There are several references in the literature
where such pulses have been calculated for model and real
problems.8,13,14

Because we are interested in quantum computing, we
have to deal with the gate transformations of the vibrational
qubit and such a problem is slightly more complex. For ex-
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ample, for the gate NOT we have to find a pulse, which
induces not just one, but two transitions between the qubit
states simultaneously:

NOT!0%→!1%, !4a"

NOT!1%→!0%. !4b"

This means, if the system was initially in the vibrational state
!0% it should be driven into the state !1%, but if it was initially
in the state !1% it should be driven into the state !0%. One
universal gate pulse should be able to perform each of these
two transformations; which one is actually performed de-
pends only on the initial state of the qubit. Therefore, in
searching for a gate pulse, one has to generalize the objective
functional in order to perform the optimization of the popu-
lation transfer for two transitions of interest simultaneously.
One straightforward way of doing this was recently proposed
and consists in maximizing the functional where the sum
over the two transitions of interest is introduced:6

Kf i) 2
k#1,2

! !*+ i
k!T "!( f

k%!2"!"
0

T
,!'! t "!2dt

! 2
k#1,2
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The index k labels the two transitions of interest, so that for
the gate NOT, we set, ( i

1#!0%, ( f
1#!1%, and ( i

2#!1%, ( f
2

#!0%. The + i
k(t), k#31,24, are the laser-driven time-

dependent wave functions for each case, and '(t) is the uni-
versal gate field.

The final goal, derivation of the equations for calculation
of the optimal pulse '(t), is accomplished by maximizing
the functional with respect to variations in five functions:
+ f
k(t), + i

k(t), k#31,24, and '(t). This procedure is very
similar to the maximization of the functional !1" described in
detail in the literature.13 Applying variations of + f

1(t) and
+ f
2(t) to the functional !5" we obtain in each case

i-
/

/t + i
k! t "##H0!.'! t "$+ i
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+ i
k!0 "#( i

k , k#31,24. !6"

These are two time-dependent Schrödinger equations for the
molecule-light interaction to be propagated forward in time,
each one with its own initial condition ( i

k . Furthermore,
variations of + i

1(t) and + i
2(t) in the functional !5" give

i-
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These are two time-dependent Schrödinger equations for the
molecule-light interaction to be propagated backward in
time, each one with its own target state ( f

k as a boundary
condition. Finally, the variation in '(t) gives

'! t "#!
s! t "
-,0

Im 2
k#1,2

*+ i
k! t "!+ f

k! t "%*+ f
k! t "!.!+ i

k! t "%,

!8"
where the sum is over the two transitions of interest. We note
that the four Schrödinger equations !6" and !7" are coupled
only through the field equation !8".

The system of coupled equations !6"–!8" is solved nu-
merically using an iterative method.12 Iterations start with
some reasonable initial guess for '(t) and, at first, only the
Eqs. !7" are propagated backward in time to determine an
initial approximation to + f

k(t), k#31,24. Then the coupled
equations !6" and !8" are propagated forward in time using
+ f
k(t) from the previous step when computing the field ac-
cording to Eq. !8". This gives the initial approximation to
+ i
k(t), k#31,24, which is now used in the field equation !8"
to propagate backward in time the coupled equations !7" and
!8". The iterative procedure continues in this way, and '(t) is
improved in each iteration, until the desired convergence is
achieved.

A slightly more general approach, which gives essen-
tially the same equations, was recently proposed by Palao
and Kosloff.9 The result !6"–!8" is naturally extended onto a
system having more then one qubit.6 Thus, a gate in a two-
qubit system !controlled not CNOT for example" involves
four transitions

CNOT!00%→!00%,

CNOT!01%→!01%,

CNOT!10%→!11%,

CNOT!11%→!10%,

and the sum in the functional !5" is over the four transitions
of interest, so that there are four two-dimensional Schrö-
dinger equations to propagate forward and four backward in
time and there are four terms in the sum of Eq. !8" and so on.

III. NOT AND HADAMARD GATES

Here we numerically solve Eqs. !6"–!8" to calculate the
optimal pulses for the gates NOT and Hadamard rotation in a
one-qubit system implemented as the ground vibrational
state, !0%, and the first excited vibrational state !1% of the OH
diatomic molecule. This diatomic molecule has been used as
a benchmark system for many coherent control studies fo-
cused on performing one state-to-state transition at a
time.12,13,15 A coherent control study of quantum gates in the
OH diatomic, to the best of our knowledge, has never been
presented before.

The treatment of the OH diatomic is simplified by the
possibility to accurately approximate its potential curve with
an analytic Morse oscillator function of the following form:

V!r "#!D"D#e!a(r!re)!1$2. !9"

Eigenvalues of the Morse oscillator are given by15,16

Ev#!D"5% v"
1
2 &!0% v"

1
2 & 2, !10"
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where 5 is harmonic frequency and 0 is the anharmonicity
parameter defined as

5)a!2D
m , 0)

a2

2m . !11"

All of the necessary Morse eigenfunctions 6v(r) can be eas-
ily computed using a recursive scheme.17 The dipole-
moment function is also taken to be the analytic form:

.!r "#.0re!r/r0. !12"

In this section we use a standard set of Morse parameters
for the OH diatomic, namely, D#0.1994, re#1.821, a
#1.189, .0#3.088, r0#0.6 !all numbers are given in
atomic units", and the target time T#750 fs. The initial
guess pulse was taken as

'! t "#'0 sin!5 !0%↔!1%t "s! t ", !13"

where '0#0.005 is a pulse amplitude !in atomic units" and
5 !0%↔!1%#E !1%!E !0% is the frequency for the !0%→!1% and
!1%→!0% transitions, and s(t) is the shape function from Eq.
!3".

During the iterative procedure of solving Eqs. !6"–!8"
we can analyze the laser-driven wave functions +k after each
propagation step by simply projecting them onto the corre-
sponding wave functions (k. Namely, the backward propa-
gated wave functions + f

k are projected onto the correspond-
ing initial qubit states ( i

k , while the forward propagated
wave functions + i

k are finally projected onto the correspond-
ing final qubit states ( f

k :

P f
k#!*( i

k!+ f
k! t#0 "%!2, k#31,24, !14"

Pi
k#!*( f

k!+ i
k! t#T "%!2, k#31,24. !15"

The four numbers Pi
k , P f

k , k#31,24 reflect the accuracy or
fidelity of the gate pulse. They can also be used to determine
the convergence of the iterative procedure. In Fig. 1 we plot
Pi
1 and P f

1 for 3001 propagation steps !i.e., for 1501
backward-forward propagation iteration loops" during the
optimization of a pulse for the NOT gate in the OH diatomic
!note: in this case the Pi

2 and P f
2 are hardly distinguishable

from the Pi
1 and P f

1 at the scale of Fig. 1 and are not plotted".
The backward propagation steps are labeled by even num-
bers starting from zero and are shown as circles and the
forward propagation steps are labeled by odd numbers start-
ing from one and are shown as diamonds. All four curves are
smooth and convergence is monotonic. The four values of
Pi , f
1,2 are converged within 10!4 in about 350 propagation
steps, within 10!5 in about 500 steps, and within 10!6 in
about 800 steps. The converged value of Pi , f

1,2 , which can be
regarded as the fidelity of the pulse, is Pi , f

1,2#0.994 813 !see
the insert in Fig. 1". All 3001 propagation steps are per-
formed in order to check that the solution is stable and noth-
ing unexpected happens if iterations continue after the de-
sired convergence is already achieved.

Figure 2!a" shows the optimized laser pulse '(t) for the
gate NOT in the OH diatomic obtained after 3001 propaga-
tion steps. Figures 2!b" and 2!c" show how the population of
the vibrational qubit states !0% and !1% changes as a function
of time for transitions !4a" and !4b", respectively, when the

pulse in Fig. 2!a" is applied to OH. The pulse shape is very
symmetric and quite simple because there is only one char-
acteristic frequency in the process, 5 !0%↔!1% . This was con-
firmed by the Fourier analysis of the gate pulse given in Fig.
2!a". The time profiles of the population transfer between the
qubit states presented in Figs. 2!b" and 2!c" are also symmet-
ric and simple. Insert in the Fig. 2!b" exhibits the fine struc-
ture of the profiles: in all cases there are small regular oscil-
lations superimposed with the monotonic decrease/growth of
the probability. Similar behavior has already been described
in the literature !see Fig. 13 in Ref. 18". These oscillations
are a reflection of the pulse action. Their frequency is twice
the frequency of the pulse, 2$5 !0%↔!1% . !The double fre-
quency can also be found in the literature in the oscillations
of the second order momenta *q2% and *p2% !Ref. 19" and
width20 of a semiclassical wave packet, for example." Fi-
nally, Fig. 2!d" shows the time evolution of population in
several upper vibrational states of OH diatomic during the
NOT pulse for the case of transition !4a" #the case of transi-
tion !4b" is very similar$. These vibrational states, v#!2%,
!3%, !4%, !5% etc., are the states interfering with the states of the
vibrational qubit !0% and !1%. Note the logarithmic scale of the
probability. At this scale the curves in Fig. 2!d" exhibit some
visible deviation from a perfectly symmetric shape and show
some negligible (&10!6) residual population in the state !2%.

The Hadamard rotation !HAD" is another very important
gate in quantum computing:

HAD!0%→
1

&
!0%"

1

&
!1%, !16a"

HAD!1%→
1

&
!0%!

1

&
!1%. !16b"

FIG. 1. Illustration of the convergence studies for the gate NOT in the OH
diatomic. The fidelity functions Pi and P f are defined in Eqs. !13" and !14".
The insert is used to show the same two curves in detail in the asymptotic
region. See text for further details.
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Figures 3!a"–3!d" illustrate our results for this gate in the OH
diatomic #compare to Figs. 2!a"–2!d" for the gate NOT$.
Although the general shape of the Hadamard pulse is very
similar to the shape of the NOT pulse, the field amplitude is
about twice smaller in the case of the Hadamard gate #note
different scales in Figs. 2!a" and 3!a"$. This is because in the
case of the Hadamard gate we need to transfer only 1

2 of the
population between the qubit states !0% and !1%, which is
clearly reflected in the Figs. 3!b" and 3!c". Therefore, the
Hadamard gate is easier to implement in a sense of popula-
tion transfer and energy required. For this reason the fidelity
of the converged Hadamard pulse that we have obtained is
considerably larger, Pi , f

1,2#0.998 759. We have also observed
that the population of the upper vibrational states is smaller
in the case of the Hadamard gate #note different scales in
Figs. 2!d" and 3!d" and the fact that the vibrational state v
#!5% is not seen above 10!9 at all$.

We have intentionally postponed the discussion of the
numerical scheme for the time propagation of the Schrö-
dinger equations !6" and !7" until now. Figures 2!d" and 3!d"
clearly show that only a few vibrational states of the OH

diatomic acquire a significant population during the gate
pulse. These are, of course, the qubit states v#!0% and !1%
and, if we set up the probability cutoff value at 10!6, the
vibrational states !2% and !3%. If the probability cutoff is set at
10!9 the vibrational states !4% and !5% should also be in-
cluded. In any case, we are dealing here with a very simple
wave packet +(t) consisting almost entirely of two vibra-
tional eigenstates, with a small participation of the third and
only a tiny contribution of upper eigenstates. In such a situ-
ation, the most efficient scheme for time propagation is the
expansion of the wave packet +(t) in the basis set of vibra-
tional eigenstates !Morse oscillator eigenfunctions 6v(r) in
our case" with time dependent complex coefficients and
propagating the system of coupled equations for these coef-
ficients forward and backward in time as required by Eqs. !6"
and !7". Convergence studies have shown that using just
three lower eigenstates as a basis set produces very reason-
able results and using more than six eigenstates in a basis set
is unnecessary. Therefore, the size of the system of coupled
equations is quite small and the time propagation is very fast
and accurate using, for example, the fourth-order Runge-

FIG. 2. The gate NOT in the OH diatomic. The qubit states are the ground
and the first excited states !0% and !1%. The target time is 750 fs. !a" Optimally
shaped pulse; !b" Switching of population between the qubit states during
the NOT!0%→!1% transformation; !c" Switching of population between the
qubit states during the NOT!1%→!0% transformation; !d" Populations of all
upper vibrational states during the gate remains small and their residual
populations are negligible.

FIG. 3. Hadamard rotation in the OH diatomic. The qubit states are the
ground and the first excited states !0% and !1%. The target time is 750 fs. !a"
Optimally shaped pulse; !b" Creation of linear superposition of the qubit
states as required by HAD!0%→ 1/& !0%" 1/& !1%; !c" Creation of linear
superposition of the qubit states as required by HAD!1%→ 1/& !0%
! 1/& !1%; !d" Populations of all upper vibrational states during the gate
remains small and their residual populations are negligible.
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Kutta method.21 We employed the interaction representation
to analytically factor out all oscillatory phases; this way we
are able to use a larger time step (0t#10 a.u.). The dipole-
moment matrix elements . i j#*6 j(r)!.(r)!6 i(r)% are com-
puted only once and are stored in memory. Therefore, we
suggest that basis set expansion is the method of choice for
the numerical modeling of optimal pulses for quantum com-
puter gates—a problem where very few vibrational eigen-
states are effectively involved in the process.

IV. EFFECT OF VARIOUS FACTORS ON ACCURACY
OF GATES
A. Anharmonicity parameter

The vibrational spectrum of the Morse oscillator is de-
termined by two factors: the harmonic frequency 5 and an-
harmonicity parameter 0 #see Eq. !10"$. In the limiting case
0→0, it becomes the spectrum of the Harmonic oscillator
where all the levels are equidistant and simultaneously ac-
cessible by the single frequency 5 through the step-ladder
process. It is intuitively clear that such a system can not be
controlled since there is no way to differentiate between the
various interfering state-to-state transitions. We have con-
firmed this in numerical tests; for rigorous theoretical proof
see Ref. 22 and references therein. In another limiting case,
when 0→7 and transitions to upper vibrational states are
impossible due to practically limited spectral bandwidth, it is
also intuitively clear that the oscillator becomes equivalent to
an isolated two-level system and can be perfectly controlled.
Real life molecules are somewhere between these two limit-
ing cases, and it is interesting to determine quantitatively
how the magnitude of anharmonicity parameter 0 affects the
accuracy of quantum gates.

In the case of the OH diatomic, 5#3964 cm!1 and 0
#89.75 cm!1890 cm!1. Here we will explore the physi-
cally relevant wide range of the anharmonicity parameter:
10909110 cm!1. This is achieved by constructing several
different model Morse potentials, all with the same values of
m , 5, and re as in real OH, but with different values of
anharmonicity 0. The values of parameters a and D should
also change according to,

a#!2m0 , !17"

D#
52

40
. !18"

In this way, we can consider the harmonic frequency as
fixed, 5#const, while the anharmonicity parameter 0 can be
varied within the desired limits. The two parameters for the
dipole-moment function .0 and r0 are also kept constant and
equal to those in the real OH. Figure 4 shows the 14 different
model Morse oscillator functions constructed in this way us-
ing the values of 0#10, 15, 20, 25, 30, 35, 40, 50, 60, 70,
80, &90, 100, 110 cm!1. The case of real OH is included as
0&90 cm!1 and is shown in bold in Fig. 4. The dissociation
energy for different curves in Fig. 4 changes according to Eq.
!17". The total number of bound vibrational states also
changes as N#(5/20)!1/2 !Ref. 16" but even for the up-
per, most anharmonic, and the most shallow Morse oscillator

with 0#110 cm!1, there are 18 bound states, which is large
enough for implementing a qubit and solving the optimal
control problem.

We have solved the optimal control problem !6"–!8" for
both Hadamard and NOT gates for all the 14 values of 0
using the target time T#750 fs; the results are summarized
in Fig. 5. It is clearly seen that the fidelity of the Hadamard
gate is always much better than the fidelity of the NOT gate
and this is consistent with the discussion in the preceding

FIG. 4. Morse oscillator functions for the 14 values of anharmonisity pa-
rameter within 10909110 cm!1 region considered in this study. See text
for further details. The Morse potential and the dipole-moment function for
true OH diatomic (0890 cm!1) are shown in bold.

FIG. 5. Fidelities of the gates NOT and Hadamard rotation as a function of
anharmonicity parameter of the model system. The insert is used to show the
same two curves in detail in the high fidelity plato region. Filled symbols
describe the case of true OH diatomic.
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section. As expected, the highest fidelity in each case is
achieved with the highest value of 0#110 cm!1. It is Pi , f

1,2

#0.994 867 for the gate NOT and Pi , f
1,2#0.998 762 for the

Hadamard transform. One important finding is the presence
of a high fidelity plateau in the region 50909110 cm!1.
The results for the real OH molecule, discussed in detail in
the preceding section (0890 cm!1), are shown as filled
symbols in the insert in Fig. 4 and fall onto that plateau.
Another important observation from Fig. 5 is a rapid drop of
the fidelity of both gates as the value of anharmonicity pa-
rameter decreases below the 0#40 cm!1.

To understand this behavior we have monitored the
populations of upper vibrational states during the gate pulse
for all studied values of 0 and have determined the maxi-
mum population observed in each state. These data for the
states !2%, !3%, !4%, and !5% are presented in Fig. 6 for the gate
NOT !note: the scale factors are different for different states".
This figure illustrates that for the values of anharmonicity
parameter in the plateau region, 50909110 cm!1, the
population of the upper vibrational states during the process
remains relatively small, but it increases significantly as 0
decreases below 0#40 cm!1. This behavior correlates with
the behavior of the gate fidelity shown in Fig. 5 and we
believe that the explanation of the observed dependencies is
as follows. When the 0 is large the molecule is closer to the
hypothetic two-level system. For example, for 0
#110 cm!1 the maximum population observed in the state
!2% during the gate pulse is only &0.01 and the populations
of all higher states are negligible. Such a system is easy to
control. However, when 0 is small, the probability flows
easily in at least several upper states as demonstrated in Fig.
6 and the system is closer to another limit, the harmonic
oscillator, and is hard to control. As a result, the fidelity of
the gates drops.

We have also examined the residual populations of upper

vibrational states at the end of the pulse t#T , for all values
of 0. It appears that in all cases the residual population of
upper states is much smaller than the maximum population
of these states found during the gate pulse and shown in Fig.
5. The optimized pulse is always able to return most of the
population from the interfering upper states back into the
qubit states as it is shown in Figs. 2!d" and 3!d". For practical
values of the anharmonicity parameter in the high fidelity
plateau region, 50909110 cm!1, the residual population
of upper states is always tiny (&10!6) and it seems more
appropriate to disregard it and to correlate the maximum
population observed in the upper states during the pulse !Fig.
5" with the fidelity of gates !Fig. 4". We just want to mention
that in the low fidelity region, 0940 cm!1, there is some
finite residual population of the upper states. There one may
want to try to correlate the residual population with the fi-
delity of gates.

B. Target time

In this section we study the effect of the target time T on
the fidelity of the gates. We have chosen three values of the
anharmonicity parameter 0#30, 60 cm!1, and 0
890 cm!1 !true OH" to represent the high fidelity plateau
and the transition region. The target time is varied in the
limits 5009T91000 fs, so that the results of the preceding
sections obtained at T#750 fs are right in the middle of the
time interval studied here. We have solved the optimal con-
trol problem !6"–!8" for 11 different values of target time T
and results for the gate NOT are presented in Fig. 7 !the
results for Hadamard gate are qualitatively similar". In all
three cases, the curves are smooth and the fidelity achieved
by the longer pulses is higher. The effect is more pronounced
for the case of 0#30 cm!1, where increasing the target time
from 500 to 1000 fs allows for the recovery of more than
10% of the gate fidelity #see Fig. 7!b"$. This makes the case
of 0#30 cm!1 almost as accurate as the 0#60 cm!1 and
0890 cm!1 cases. The fidelities achieved with the highest
value of T#1000 fs are Pi , f

1,2#0.995 848, Pi , f
1,2#0.997 017,

and Pi , f
1,2#0.997 094, respectively.

To understand this effect we have inspected the opti-
mized pulses for different values of the target time and have
found that the amplitude of the laser field smoothly decreases
as the target time increases. For example, in the spectacular
case of 0#30 cm!1 the maximum value of the electric field
!achieved in the middle of the optimized pulse" is 'max
#0.008 61 a.u. for T#500 fs and is only 'max
#0.004 34 a.u. for T#1000 fs. This result is well under-
stood since a longer action time, assigned to perform the
same state-to-state transition in a qubit, allows using the field
of smaller amplitude. However, we have also observed very
clearly that in those cases when the field is higher !the target
time is shorter" the upper interfering states acquire higher
populations during the pulse. Thus, the arguments of the pre-
ceding section about the effect of involvement of the upper
states on accuracy of gates are applicable here as well,
though the effect is indirect in the following sense: increas-
ing the pulse target time we decrease the field amplitude and,
as a result, decrease the participation of interfering upper

FIG. 6. Populations of upper vibrational states during the gate NOT as a
function of anharmonicity parameter of the model system. Note the different
scale factors used for different states.
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states in the process, which in turn increases the fidelity of
qubit transformation.

By analogy with Fig. 6 we have monitored the popula-
tions of upper vibrational states during the gate pulse and
plotted the maximum values of the probability observed in
those states, but now as a function of the target time T of the
pulse. We have done this for all 11 values of the target time
in the interval 5009T91000 fs and the three values of an-
harmonicity parameter studied in this subsection. In all three
cases we have found that the population of the upper vibra-
tional states drops as the target time T increases. The results
for the gate NOT in the case of intermediate value of anhar-
monicity parameter 0#60 cm!1 are presented in Fig. 8. It is
quite interesting that the general behavior of the curves in
Fig. 8 is qualitatively similar to that seen in Fig. 6. This is
despite the fact that the two absolutely different parameters
!anharmonicity in Fig. 6 and the target time in Fig. 8" are
plotted along the horizontal axis. Shapes of the curves in Fig.
8 correlate very well with the shape of the fidelity curve in
Fig. 7 and we believe this can serve as a proof of the effect
discussed in the preceding paragraph.

C. Penalty function

The final constraint we examine is the penalty function
s(t). For the cases 0#30, 60 cm!1, and 0890 cm!1 and
the target time T#1000 fs we have solved the optimal con-

trol problem !6"–!8" using s(t)#1, i.e., without any penalty
function. The shape of the pulse optimized in the absence of
s(t) is different from the shape given in Figs. 2!a" and 3!a".
Now we are dealing with the pulses that start and stop
abruptly, showing almost constant amplitude of the field
through the pulse duration !less than 10% deviation, almost
rectangular pulses". Such pulses are very difficult to produce
experimentally and we consider them here only as a limiting
case. The fidelity of the gate NOT achieved in this case for
all three values of 0 is very high, around 0.999 !see Fig. 7,
bold symbols in the upper right corner".

Not only the general shape of the optimized pulses
changes, but also the amplitude of the field changes signifi-
cantly. Thus, in the case of 0890 cm!1, T#1000 fs we
observed the maximum field amplitude 'max#0.003 82 a.u.
for the case of s(t) as in Eq. !3" and only 'max
#0.002 06 a.u. for the case of s(t)#1. This is because when
the penalty function is used the field amplitude is constrained
to increase and decrease very slowly #as in Figs. 2!a" and
3!a"$ and the pulse’s ‘‘effective’’ action occurs on the time
interval shorter that T . In other words, the pulse duration is
truncated by the penalty function and a field amplitude must
be larger near the center of the pulse (t&T/2), compare to
the amplitude of the flat rectangular pulse, in order to per-
form the same qubit transformation. However, as we have
already explained in the preceding section, larger field am-
plitude means higher populations of upper vibrational states
and lower fidelity of the pulse. We believe such a scheme
explains the observed jump of fidelity for rectangular pulses.

V. CONCLUSIONS

In this paper we have studied several properties of a
model quantum computer, which uses vibrational eigenstates
to implement quantum information bits and uses optimally
shaped pulses to operate quantum logic gates. We have dem-

FIG. 7. Fidelity of the gate NOT as a function of pulse’s target time for the
three systems with anharmonicity parameters 0#30, 60 cm!1 and 0
890 cm!1 !true OH diatomic". Three symbols in bold in the upper right
corner show the results obtained without any penalty function !Sec. 4 C".
Frame !b" is used to show the case 0#30 cm!1 at the different scale, so
that the increase in gate fidelity by more than 10% is clearly seen.

FIG. 8. Populations of upper vibrational states during the gate NOT as a
function of pulse’s target time for a model system with the medium value of
anharmonicity parameter 0#60 cm!1.
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onstrated that a number of factors can and should be em-
ployed in order to achieve the high fidelity of gates in such a
quantum computer. One of these factors is the anharmonicity
parameter of the molecule itself. Indeed, we have observed
the high fidelity plateau in the region 50909110 cm!1. In
such anharmonic systems, it is easier to achieve a good con-
trol over the vibrational processes because the different state-
to-state transitions are easier to resolve and, as we have
shown, it is easier to restrict the vibrational population of the
molecule to the qubit states !0% and !1%. Therefore, we suggest
that using molecules with large anharmonicity parameters
will help significantly in achieving the necessary high fidel-
ity of gates in the vibrational qubit. The anharmonicity pa-
rameter of the OH diatomic is 0890 cm!1, and falls into
that range. Naturally, all bonds that involve hydrogen atom
are very anharmonic and are good candidates for implement-
ing a vibrational qubit. For example, the anharmonicity pa-
rameter of the CH diatomic is 0863 cm!1 and is also in
that range. Among larger real world molecules many hydro-
carbons !benzene, naphthalene, etc." can be good candidates
for practical realization of multiple vibrational qubits. In
such molecules, there are always several bright IR-active
normal vibrational modes associated with CH stretches and
those are very anharmonic. Other good candidates can, prob-
ably, be found among the molecules that have very unhar-
monic triple C)O bonds, such as Rh(CO)2(C5H7O2) !Ref.
23" or Cr(CO)6 .24

We have observed that the fidelity of quantum gates
drops significantly when the anharmonicity parameter is less
than 0#40 cm!1. However, we have also found that even in
such cases the fidelity of gates can be improved significantly
by relaxing constraints on the shaped pulse. Thus, longer
pulses allow using a field of smaller amplitude and avoid
putting too much population into the upper vibrational states
!!2%, !3%, !4%,..." interfering with the states of the qubit !0% and
!1%. This permits to use efficiently the molecules with not
enough anharmonicity and obtain a much better fidelity of
quantum gates.

The effect of the penalty function used to smoothly
switch-on and switch-off the optimal pulse is somewhat
similar to reducing the pulse duration and is, therefore, nega-
tive in a sense of the gate fidelity. Thus, the sin2 penalty
function !3" rises and decays, perhaps too slowly, reaching
the unit value only in the middle of the pulse (t#T/2) and
leaving a very short time for efficient pulse action. This must
be compensated by increasing the field amplitude, which in-
creases the population of upper vibrational states and results
in lower fidelity of the gates. Therefore, we suggest explor-
ing other forms of the penalty function in order to meet both
conditions simultaneously: the smoothly switching-on and
switching-off of the pulse and the relatively long time of

efficient pulse action. This can be easily achieved with pen-
alty functions that are flatter than the sin2 function in Eq. !3".

Furthermore, we have clearly seen that some quantum
gates exhibit naturally better fidelity than the others. In all
cases considered here the fidelity of the Hadamard rotation
was significantly better than the fidelity of the gate NOT.
This is because for the Hadamard rotation we need to trans-
fer only 1

2 of the population between the qubit states. This is
achieved using the field of smaller amplitude and results in
better gate fidelity.

Finally, we have demonstrated that a quantum computer
based on vibrational eigenstates to implement the quantum
information bits and optimally shaped laser pulses to apply
the quantum logic gates can be a robust tunable system.
Carefully choosing various properties of the molecule and of
the pulse allows one to achieve very high fidelity gates.
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