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A potential energy surface is constructed for the ground X 1A1 electronic state of cyclic-N3
+ based on

three-dimensional spline interpolation of ab initio points. The vibrational states of this molecular ion
are calculated in the range up to 14 500 cm−1 using hyperspherical coordinates and the
coupled-channel !sector-adiabatic" approach. All the vibrational states are analyzed and assigned.
The Franck-Condon overlaps of these states with the vibrational states of the neutral are calculated
to predict the photoelectron spectrum of cyclic-N3. Peak intensities are governed by the nodal
structure of the vibrational wave functions and reflect the large geometric phase effect predicted for
cyclic-N3. Experimental validation may shed light on the existence of this elusive molecule and
confirm the magnitude of the geometric phase effect. © 2006 American Institute of Physics.
#DOI: 10.1063/1.2335437$

I. INTRODUCTION

Cyclic-N3 is a Jahn-Teller molecule that exhibits a coni-
cal intersection between its two lowest potential energy sur-
faces !PESs" at D3h !equilateral triangle" configurations. The
Jahn-Teller distortions lead to a lower-symmetry equilibrium
geometry, i.e., three equivalent C2v !isosceles triangle"
minima connected by pseudorotation motion. At the point of
conical intersection the symmetry of the Born-Oppenheimer
electronic wave function changes from 2B1 to 2A2 which im-
poses additional conditions on nuclear wave functions.

Cyclic-N3 was first detected in the UV photolysis
experiments:1–3

ClN3 ——→
hv

Cl + N3. !1"

Using the velocity map imaging technique the kinetic energy
distribution of N3 fragments was obtained, which also pro-
vided a low-resolution spectrum of the internal energy in the
N3 molecules. The distribution had pronounced bimodal
structure and clearly indicated that, in addition to the already
known weakly bound linear-N3 isomer, there was another
energetic form of N3, with energy about 1.35 eV above that
of linear N3. This finding was in good agreement with earlier
ab initio calculations,4 which predicted a metastable ring iso-
mer in the form of an acute isosceles triangle !cyclic-N3" at
1.30 eV above linear N3.

Thus, cyclic-N3 carries a large amount of energy and is
an interesting new candidate for technological applications in
energy storage, high nitrogen explosives, and new propel-
lants. It is worth mentioning that the nitrogen resources on
our planet are practically limitless. Moreover cyclic-N3 could
be used as a powerful and clean monopropellant:

2N3 → 3N2. !2"

Since this reaction produces only nitrogen molecules, the
main component of atmospheric air, the exhaust gases
present no environmental hazards and are indistinguishable
from the ambient air.

The first experiments1–3 stimulated much interest from
the theory side. Extensive electronic structure calculations of
the critical points on global PES for nitrogen triatomic have
been carried out.5 It was demonstrated that cyclic-N3 repre-
sents stable species, at least in a gas-phase collision-free re-
gime !e.g., in molecular beams". This N3 isomer is “locked”
in a deep potential energy well surrounding the 2A2 / 2B1
conical intersection; the barriers to isomerization into linear
N3 and to dissociation onto N!2D"+N2 products are 31.9 and
33.1 kcal/mol, respectively. Dissociation onto the ground
state products N!4S"+N2 is spin forbidden and can proceed
only through the three intersystem crossings located at ener-
gies above 28.3 kcal/mol, which was shown to be ineffi-
cient. An accurate ab initio potential energy surface for
cyclic-N3 has been computed6 and rigorous calculations of
the vibrational states have been performed taking into ac-
count the geometric phase effect.7 Thermodynamics of the
cyclization mechanism has also been explored.8 On the ex-
perimental side, new evidence for production of cyclic-N3
has been discovered in the ClN3 photofragment translational
spectroscopy experiments,9 in the experiments on photoion-
ization of N3 fragments using the synchrotron radiation
source,10 in the time-of-flight studies of HN3,8 and finally in
the recent velocity map imaging experiment.11 For the com-
prehensive review of the experimental and theoretical work
on cyclic-N3 see Ref. 12.

All available experimental information for cyclic-N3 is
consistent with the theoretical picture of this molecule, how-
ever, the final proof for the existence of cyclic-N3 is yet to be
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made by means of high-resolution spectroscopy. Two possi-
bilities have been discussed at the recent meetings, one being
the infrared spectroscopy13 and the other one the photoelec-
tron spectroscopy. The latter requires information about the
ionic cyclic-N3

+ species, e.g., ionization potential, as well as
PES of the ground and electronically excited states of cyclic-
N3

+. These topics have been addressed in our recent work14

and have indicated a favorable path to experimental imple-
mentation. Here we present calculations of the vibrational
wave functions of cyclic-N3

+ and the photoelectron spectrum
of the neutral.

Recently, several studies of the molecules that are some-
what similar to cyclic-N3 have been published. For example,
an old interest15–18 in the simplest members of this family,
H3

+ and its isotopologue D3
+, has been revived by significant

progress in theoretical treatment of the recombination reac-
tion relevant to interstellar chemistry: H3

++e→H3→H2+H
!dissociative electron capture".19–21 An impressive experi-
mental and theoretical work has been published on high-
resolution spectroscopy of Li3,22,23 where both the initial
!ground X 2E!" and the final !excited A 2E"" electronic adia-
batic surfaces constitute the doubly degenerate Jahn-Teller
pairs. In this system, the inclusion of the geometric phase
effects for both surfaces is necessary for accurate calcula-
tions of the vibrational states and predictions of the spectra.
Rotationally resolved electronic spectrum of cyclic-B3 has
also been observed experimentally;24 however, in this mol-
ecule only the excited state !2 2E!" is a Jahn-Teller pair. Fur-
thermore, very low stabilization energy in PES of this state
results in very small Jahn-Teller distortion from the D3h con-
figuration, which therefore can be neglected in an approxi-
mate treatment. A neighbor of nitrogen in the periodic table,
carbon, also has an energetic cyclic-C3 form !3A2", which
exhibits no conical intersection in the D3h and is an equilat-
eral triangle25 with a simple vibrational spectrum. A cyclic
trimer has also been predicted and theoretically characterized
for another neighbor of nitrogen, oxygen. The energetics of
cyclic-O3 is very similar26,27 to that of the cyclic nitrogen,
although it has an equilibrium D3h structure and exhibits no
conical intersections in the ground 2 1A2 state. Note that
cyclic-O3 has never been observed in the gas-phase experi-
ment due to negligible Franck-Condon overlap with the
ground state of the “open” ozone molecule. Many references
to earlier works on Na3, Cu3, and Al3 can be found in the
above papers as well.

Several special features distinguish cyclic-N3 from all
these molecules. For example, this is the only known homo-
nuclear triatomic molecule with a vibrational zero-point en-
ergy !ZPE" significantly higher than the energy of the pseu-
dorotation barrier and significantly lower than the energy of
the conical intersection.5,6 Due to these properties, the geo-
metric phase effects are very large for all the vibrational
states of cyclic-N3 !including the ground vibrational state"
and can be investigated by performing calculations on a
single adiabatic potential energy surface,7 i.e., without taking
into account nonadiabatic interactions with the cone states,
which are important in the vicinity of the conical intersec-
tion. Moreover, in the photoionization of cyclic-N3, the ini-
tial state is a Jahn-Teller state while the final state is not,

which is different from examples discussed in the previous
paragraph. Thus, the complicated Jahn-Teller wave functions
of cyclic-N3 are projected onto simpler wave functions of
cyclic-N3

+, which makes signature of geometric phase effects
very clear. However, higher excited states of cyclic-N3

+ !in
the range of 5–8 eV above the ground electronic state" ex-
hibit conical and glancing intersections14 and offer many
more opportunities for experimental and theoretical studies.

The structure of the paper is as follows. In Sec. II we
describe the theoretical approach and computational details.
The results are presented and discussed in Sec. III. Conclu-
sions are given in Sec. IV.

II. THEORETICAL AND COMPUTATIONAL METHODS

A. Coordinates, ab initio method, and spline
interpolation of PES

As in the earlier work,6,7 we describe the positions of
nitrogen nuclei in the cyclic-N3

+ triatomic using adiabatically
adjusting principal-axes hyperspherical !APH"
coordinates.28,29 In terms of the usual mass scaled internal
Jacobi coordinates !r ,R ,!", the APH coordinates !" ,# ,$"
are defined as follows:

" = %R2 + r2, " ! #0;%$; !3"

tan # =
%!R2 − r2"2 + !2Rr cos !"2

2Rr sin !
, # ! #0;&/2$; !4"

tan $ =
2Rr cos !

R2 − r2 , $ ! #0;2&$ . !5"

Qualitatively, the value of the hyper-radius " is a measure of
the overall “size” of a triatomic molecule. Hyperangles # and
$ describe changes in its “shape.”

Stereographic projection28 is often used with the APH
coordinates because this is a convenient way to plot a two-
dimensional !2D" slice of PES at a fixed value of the hyper-
radius ", while # and $ are allowed to vary. This corresponds
to variation of the shape of the triatomic molecule keeping
its overall size constant. In such a 2D plot, the energy is a
function of two Cartesian variables X and Y defined as

X = cos $ tan!#/2" , !6"

Y = sin $ tan!#/2" , !7"

where −1'X'1, −1'Y '1. With this choice, the center of
the plot !X=0, Y =0" corresponds to #=0 and describes the
triatomic in D3h geometry, the equilateral triangle. A distance
of any point from the center of the plot is determined by the
variable # only:

%X2 + Y2 = tan!#/2" . !8"
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Points at the unit circle X2+Y2=1 correspond to #=#max
=& /2 and describe linear configurations of the triatomic sys-
tem !not considered here". Stereographic projections at vari-
ous values of the hyper-radius " can be stacked together to
give a useful three-dimensional !3D" view of PES !Ref. 6" or
of the wave functions.7

Using APH coordinates, we have set up a dense grid
in three dimensions with "!a.u."= &2.91;2.99;3.065;3.14;
3.205;3.268;3.325;3.40;3.485;3.6;3.725;3.86', tan!# /2"
= &0.0;0.022;0.047;0.078;0.111;0.149;0.19;0.25', and $
= &0;15° ;30° ;45° ;60° '. Our grid contains only five equi-
distant points in $ because PES is quite smooth along this
coordinate and the energy varies slowly as the observer goes
around the origin. Actually, in the vicinity of the origin !i.e.,
near the equilateral configuration", PES is almost isotropic in
$, which results in a near degeneracy between two vibration
modes in this and some other D3h triatomic molecules.24–27

This feature will be discussed below. Along # and ", the
energy of cyclic-N3 changes significantly and we had to de-
velop a much denser nonregular grid for these two coordi-
nates. First, we performed calculations of a few points along
the D3h and C2v symmetry lines to determine a coarse topol-
ogy of the surface, and then we built a full 3D grid for
accurate representation of the surface in !" ,# ,$" space. Our
grid contains 12 points along the #=0 line to describe equi-
lateral triangle configurations !D3h". The 12(7(2=168
points in the $=0 and $=60° planes are used to describe
isosceles configurations !C2v" while the 12(7(3=252
points are used to describe cyclic-N3

+ configurations of the
general Cs symmetry. Thus, our grid contains a total of 432
points. Electronic structure calculations14 for cyclic-N3

+ were
carried out at each point of this grid. The PES points are
given as EPAPS supplement.36 Single point energies of the
ground and 12 lowest excited electronic states of cyclic-N3

+

were obtained at the CCSD/cc-pVTZ and EOM-CCSD/cc-
pVTZ levels of theory,30–33 respectively, with 1s core orbitals
frozen using Q-CHEM ab initio package.34 The quality of the
potential energy surface for closed shell N3

+ near the equilib-
rium can be evaluated based on typical errors of CCSD/cc-
pVTZ for frequencies: the mean absolute errors of the
CCSD/cc-pVTZ harmonic frequencies and anharmonic con-
stants are about 60 cm−1 !1.5%–3%" and 1.7 cm−1,
respectively.35

Finally, an accurate three-dimensional interpolant be-
tween the ab initio points has been constructed using the
tensor product B-cubic spline representation.37 The resulting
PES thoroughly covers the energy range up to 2 eV
!(16000 cm−1", which is significant for calculations of the
vibrational states of cyclic-N3

+ seen in both cold and hot pho-
toelectron bands of the neutral. Within the configuration
space covered by the interpolant on the 3D grid, the surface
representation is very accurate. In addition, we have con-
structed a one-dimensional !1D" extrapolant along # coordi-
nate into the region outside of the grid, i.e., behind the value
of tan!# /2"=0.25, using a simple quadratic function. PES is
not accurate in that region, but this smooth extension was
necessary for the finite-basis representation !FBR"/discrete
variable representation !DVR" calculations of the vibrational
states. Extrapolation in $ coordinate is unnecessary; due to

periodicity all physical values of $ are covered by the grid.28

Extrapolation in the hyper-radius " is not required either,
because the relevant range of ", to be scanned by the sector-
adiabatic approach,29 is thoroughly covered by the grid.

B. Calculations of the vibrational states

It is often assumed that PES of the D3h molecules is
isotropic along $ and that the motion in the !# ,$" plane is
uncoupled from the breathing motion characterized by ". No
experimental information on cyclic-N3

+ is currently available
to support these approximations. In contrast, some inter- and
intramode anharmonicities !couplings" are apparent from just
looking at the PES pictures. For example, in Fig. 2 in the
next section, the contour lines look very similar to circles
near the origin !small #"; however, they distort quite signifi-
cantly towards the triangular shape at larger values of #.
Thus, the potential energy surface V!" ,# ,$" appreciably
couples different internal degrees of freedom, and the
Schrödinger equation for nuclear motion is nonseparable and
cannot be solved by analytical decoupling. Therefore, we
carried out the numerically accurate full dimensional calcu-
lations of the vibrational states including all couplings and
anharmonicities present in PES.

We “decouple” the radial and angular coordinates nu-
merically using the sector-adiabatic technique.29 In this ap-
proach, the full dimensional Schrödinger equation is solved
in two steps. First, the hyper-radius " is partitioned into a
large number of sectors !intervals" and the two-dimensional
angular !# ,$" part of the equation is solved numerically for
each sector with "=") fixed !as a parameter" at the center of
each sector. The potential coupling matrices and overlap ma-
trices between the neighboring !adjacent" sectors are also
computed at this step. In the second step, a set of one-
dimensional coupled-channel !CC" equations is obtained for
the hyper-radial " coordinate29 and is solved using a numeri-
cal propagation technique. In this procedure, the coupling is
recovered and the accurate full dimensional solutions of the
Schrödinger equation are obtained using the exact Hamil-
tonian and including all couplings.

The parallel computer code of Kendrick,38–40 which we
applied previously to calculate the vibrational bound states in
the cyclic-N3 molecule,7 was used in this work as well. The
code employs an efficient hybrid FBR/DVR !Ref. 41" algo-
rithm to solve the angular !# ,$" part of the problem and uses
Numerov propagator42 to solve the coupled-channel equa-
tions in ". Propagation of the coupled-channel equations is
performed separately for the states of different symmetries.
The range of " !a.u."! #2.91;3.86$ was partitioned onto 155
sectors using a constant step size of *"=0.006 a.u. Dimen-
sion of the DVR in # based on Jacobi polynomials was N#

=104, which corresponds to the number of Gauss-Legendre
quadrature points in #̃)&−2#. The FBR in $ uses complex
exponential functions and its basis set size was N$=165. The
cutoff value for the sequential diagonalization truncation
!SDT" algorithm was " dependent and varied from at 20 eV
at small " to 7.2 eV near the minimum point and to 9 eV at
large ". The coupled-channel equations in " contained 40
channels for A1- and A2-symmetry solutions and 160 chan-

084306-3 Spectrum of cyclic-N3 J. Chem. Phys. 125, 084306 "2006!

Downloaded 07 Mar 2007 to 134.48.20.29. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



nels !80 doubly degenerate channels" for E-symmetry solu-
tions. Convergence studies were performed with respect to
the covered range of ", the number of sectors in ", the energy
cutoff values, the 2D basis set size in # and $, the number of
coupled channels, and the accuracy of Numerov bisections.
The convergence of all states of A1 and A2 symmetries and
most E-symmetry states is below 1 cm−1. Most of the states
below 10 000 cm−1 are converged tighter than 0.1 cm−1. Sev-
eral E-symmetry states did not converge better than to within
5 cm−1.

Since cyclic-N3
+ contains three identical nuclei, the sym-

metry of its vibrational eigenfunctions can be classified using
the irreducible representations !irreps" of the permutation
group S3. This group has two nondegenerate irreps, A1 and
A2, and one doubly degenerate irrep, E. In the APH coordi-
nates, the symmetry is entirely determined by the behavior of
the wave function along the hyperangle $ that encircles the
origin. The vibrational wave functions of the A1 !A2" sym-
metry are symmetric !antisymmetric" with respect to an ex-
change of any two of the three nuclei and thus exhibit a
threefold symmetry. These symmetry operations correspond
to reflections of the wave functions through the three C2v
planes, which appear in the APH coordinates at $=0, $
=120°, and $=240° and cross along the D3h line which ap-
pears in the APH coordinates at #=0 !see Fig. 2 below". The
wave functions of E states exhibit twofold symmetry; in each
pair of the doubly degenerate wave functions, one !Ea" is
symmetric with respect to reflection through the $=0° plane
and another one !Eb" is antisymmetric. Classification of the
vibrational states according to A1, A2, and E symmetries is
exact.

C. Modeling of the photoelectron spectrum

In a photoexcitation process, the intensities of spectral
peaks are determined by squares of the dipole moment ma-
trix elements between the initial and final states:43

Iphoto + *+, f*! f ,i*,i,",#,$*2

- *! f ,i!"eq,#eq,$eq"*2+, f*,i,",#,$
2 , !9"

where ,!" ,# ,$" and ! f ,i!" ,# ,$" represent the vibrational
wave functions and the dipole moment vector function, re-
spectively; integration is over the vibrational coordinates
only. The second expression assumes that each component of
! f ,i can be approximated by its value at the equilibrium
nuclear configuration: ! f ,i!" ,# ,$"-! f ,i!"eq ,#eq ,$eq". This
standard approximation !i.e., Condon approximation" is ap-
plicable to molecules with the ground vibrational wave func-
tion localized !i.e., as a multidimensional Gaussian function"
near the equilibrium position !"eq ,#eq ,$eq". The ground vi-
brational state !0,00" of cyclic-N3

+ !described in the next sec-
tion" is a good example of this kind. In contrast, the ground
state wave function of neutral cyclic-N3, which plays the role
of ,i!" ,# ,$" in our case, is highly delocalized. This wave
function is shown in Fig. 1, lower frame, using isovalue sur-
face for *,*2 in three dimensions. PES of cyclic-N3 is shown
in Figs. 2–4 !lower frame" and will be discussed in detail in
the next section. Analysis of PES and the wave function
shows that it is still possible to define "eq="MIN !see Fig. 4

below" and, as an approximation of some sort, to choose #eq
to be somewhere between #MIN and #TS, because these num-
bers are quite close !see Fig. 3 below", however, there is no
representative value of the hyperangle $ that can serve as
$eq. Rigorously speaking, we cannot define $eq=$MIN be-
cause the minima on cyclic-N3 PES are very shallow and,
consequently, the wave function is not localized in these
minima. A more appropriate strategy, perhaps, would be to
develop an approximation of another kind, where the isotro-
pic behavior of ,i!" ,# ,$" along the hyperangle $ is as-
sumed, based on the fact that the shape of PES along this
coordinate is more like in the particle on the ring !see Fig. 2"
rather than in the harmonic oscillator problem. However,
such a model would not be applicable to cyclic-N3 and other
Jahn-Teller molecules, where ! f ,i!" ,# ,$" has strong $ de-
pendence. This phenomenon is known as the geometric
phase effect or the Berry phase.44–46 In the calculations of the
vibrational wave functions it can be accounted for either by
specifying the double-valued boundary conditions and using
half-integer basis set for FBR in $,22,23,47,48 or by employing
a more general gauge theory.49–52 In the previous work7 on
cyclic-N3, we followed the latter approach, although both
methods produce the vibrational wave functions with correct
permutation symmetries !A1, A2, or E" that are also consis-
tent with the symmetry of ! f ,i!" ,# ,$". This is important
because the selection rules are determined by symmetry
properties of the initial and final wave functions in Eq. !9":
A1!→A1", A2!→A2", and E!→E", where ! and " are used to
label the states of cyclic N3 and N3

+, respectively. Note that

FIG. 1. 3D wave functions for the ground vibrational state of cyclic-N3 with
the geometric phase included !the “horseshoe-type” state, lower frame" and
the brightest state of cyclic-N3

+ in the photoelectron spectrum !upper frame".
Assignments are given in terms of vibrational polyads !v1 ,v!". The hyper-
radial direction " is plotted perpendicularly to the !X ,Y" plane. For simplic-
ity of presentation, the tan!# /2" axis is labeled by the polar hyperangle #
throughout the paper.
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since the ground electronic state wave function of cyclic-N3
+

is a fully symmetric !X 1A1" and single-valued function of
the nuclear coordinates !" ,# ,$", no geometric phase effect is
present in the ion and the symmetry treatment of its vibra-
tional states , f!" ,# ,$" is straightforward.

Therefore, for the exact calculation of the photoelectron
intensities, one should first calculate ! f ,i!" ,# ,$" in all the
regions of the configuration space spanned by the vibrational
wave functions ,i!" ,# ,$". Then, one should calculate the

overlaps +, f*! f ,i*,i,",#,$ from Eq. !9" properly accounting for
the geometric phase in ,i and ! f ,i. A similar approach !al-
though without geometric phases" is common in infrared vi-
brational spectroscopy, however, it is rarely employed in the
electronic spectroscopy, and almost never in photoelectron
spectroscopy because of the additional complexity due to
outgoing free electron, and is beyond the scope of the present
paper. The correct treatment of the geometric phases of
cyclic-N3 is readily available, since the vibrational wave
functions ,i!" ,# ,$" with correct permutation symmetry and
with the geometric phases included were characterized in the
previous work.7 However, the dipole moment function
! f ,i!" ,# ,$" from Eq. !9" is not yet available and we employ
a less rigorous Condon-type procedure, that is, we simply
calculate the Franck-Condon !FC" overlaps +, f *,i,",#,$ of
Eq. !9" to predict the intensities.

For cyclic-N3
+, we use the vibrational wave functions cal-

culated in this work !see next section". For the neutral, we
employ the vibrational wave functions calculated in the pre-
vious work7 with the geometric phase included using the
gauge theory. Readers are encouraged to read Ref. 7, where
the importance of the geometric phase effect in the vibra-
tional spectra of cyclic-N3 has been demonstrated.7,53 For
example, in the absence of the geometric phase, the ground
vibrational state is always totally symmetric A1 state and the
first vibrationally excited state is of E symmetry. In the
cyclic-N3, due to the geometric phase, the lowest state of E

FIG. 2. Contour maps of the potential energy surfaces for neutral cyclic-N3
!lower frame" and ionic cyclic-N3

+ !upper frame". Stereographic projections
discussed in the text are used at "=3.466 a.u. and "=3.268 a.u. for cyclic
N3 and N3

+, respectively, which corresponds to the minimum energy points
for each species. Shaded areas show zero-point energies for each species. In
the lower frame the conical intersection is in the middle !X=0, Y =0"; empty
dots !!" indicate points of minima, filled dots !•" indicate transition state
points. Note that energies of the contour lines are different in the two
frames. In the lower frame: 0.005, 0.02, and 0.0409, then from 0.08 with
0.08 steps until 0.64 eV. In the upper frame: from 0.24 with 0.24 steps until
2.88 eV.

FIG. 3. 1D slices through the Y =0 !horizontal" line of the 2D plots given in
Fig. 2. Zero-point energies of the two species are shown using dashed lines.
It is clear that the transition state !TS" energy in cyclic-N3 is only slightly
above the minimum energy point !MIN" and is small compared to its zero-
point energy. Photoionization process leading from cyclic-N3 to cyclic-N3

+ is
shown schematically by two gray arrows. Note that the energy scales in the
upper and lower frames are different.
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symmetry is pushed down to 1325.67 cm−1 and becomes the
ground vibrational state, while the lowest state of A1 symme-
try is lifted up to 1401.22 cm−1 and becomes the first excited
vibrational state.7 This feature is of major importance for
spectroscopy of cyclic-N3, as it determines that the main
!cold" band will be due to E!→E" transitions, while the hot
band will be due to A1!→A1" transitions.

Although the cyclic-N3 molecules are produced rotation-
ally cold in the recent molecular beam experiments,1–3,9–11

their vibrational temperature appears to be high, about
300 K, because there is no vibrational relaxation following
the photodissociation of ClN3. At this temperature, a few
more low lying vibrational states of cyclic-N3 are populated
and may appear as hot bands in the photoelectron spectrum.
For example, the third vibrational state of cyclic-N3 is only
at 1501.68 cm−1. This state is the lowest state of A2 symme-
try. Photoionization from this state will give rise to a pro-
gression of the A2!→A2" transitions, although those must be
much less intense due to small nuclear spin weight of A2
symmetry !see below". The fourth vibrational state in cyclic-
N3, another state of E symmetry at 1668.88 cm−1, should
also be taken into account. The populations of all higher
states are insignificant !i.e., less then 5% of the ground vi-
brational state population at 300 K", and therefore, these
states are not included in calculations.

In addition to thermal Boltzmann distribution, we also
included nuclear spin degeneracy factors. The nitrogen nu-
clei are spin-one bosons and the total number of nuclear spin
states is given by !2s+1"3=27 for s=1. Among them, there

are !2s+1"!2s+3"!s+1" /3=10, !2s+1"!2s−1"s /3=1, and
!2s+1"!s+1"8s /3=16 states of A1, A2, and E symmetries,
respectively. Since the total wave function must be symmet-
ric, the nuclear spin states should be combined with vibronic
states of the same symmetry. Thus, the numbers 10, 1, and
16 should be used as weighting factors for the bands of these
symmetries. Since E-symmetry states occur in doubly degen-
erate pairs !Ea and Eb", the FC factors for the E!→E" tran-
sitions should be summed over the final states !Ea" and Eb""
and averaged over the initial states !Ea! and Eb!". Using the
orthogonality of Ea and Eb states, we obtain the FC factors
for E!→E" transitions:

FC =
+Ea"*Ea!,2 + +Eb"*Eb!,2

2
. !10"

Rotational broadening was not included in the calculations.

III. RESULTS AND DISCUSSION

A. Potential energy surface of cyclic-N3
+

This section presents PES of cyclic-N3
+, discusses its ma-

jor features, and compares this surface to the surface of the
neutral cyclic-N3. We employ 2D and 1D slices through the
hypersphere. Figure 2 shows the two-dimensional !# ,$"
slice through the minimum energy point for each surface; the
stereographic projection described above is used. Several dif-
ferences between the two species are clearly seen: Neutral
cyclic-N3 is a Jahn-Teller molecule, which exhibits conical
intersection at D3h !Fig. 2, lower panel", 4568 cm−1 above
the minimum. In contrast, PES of cyclic-N3

+ has a minimum
at D3h configuration !upper panel of Fig. 2". These features
persist for all values of the hyper-radius ". In the ionic D3h
species, the equilibrium lengths of the three equivalent
nitrogen-nitrogen bonds are equal to 1.313 Å.14 In contrast,
the minimum energy point of the neutral species is shifted to
an acute isosceles triangle geometry with the apex angle of
49.86°, two longer bonds of 1.466 Å each, and one shorter
1.236 Å bond.5,6 Three such equivalent minima exist on
PES; they correspond to placing each of the three nitrogen
atoms of this molecule in the apex position. The wells
around these minima !shown in Fig. 2" are very shallow and
are separated by three transition states at 311.33 cm−1. At
these transition state points, cyclic-N3 is an obtuse isosceles
triangle with the apex angle of 71.93°, two shorter bonds of
1.306 Å each, and one longer 1.535 Å bond.5,6 Note that all
geometries of an X3 triatomic molecule that belong to the
C2v point group !isosceles triangles" appear in the APH co-
ordinates at $=n(60° !n is an integer". The points at $
= &0;120° ;240° ' represent the acute isosceles triangle ge-
ometries !including the three minima", while the points at
$= &60° ;180° ;300° ' represent the obtuse isosceles triangle
geometries !including the three transition states".

Shaded areas superimposed with the contour plots in
Fig. 2 accentuate those parts of the surfaces that lie below the
corresponding zero-point energies, i.e., 1325.67 and
1927.48 cm−1 for cyclic N3 and N3

+, respectively. These areas
can be described as two-dimensional classically allowed re-
gions for the ground vibrational states. The readers can
clearly see that the permutation of the three nuclei in cyclic-

FIG. 4. Potential energy for the critical points of the two species as a
function of the hyper-radius. Energy scales, zero-point energies, and photo-
ionization process are shown as in Fig. 3. The Franck-Condon region is
clearly seen.
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N3, the so-called pseudorotation, is accessible at zero-point
energy, as all the minima and the transition states fall into the
shaded area. Also, since the overlap between the shaded ar-
eas from the two frames is negligible, the Franck-Condon
factors between the ground vibrational states of the neutral
and ionic species are relatively small, but increase rapidly
with vibrational excitation.

Additional insight is obtained by looking at the slice
along the Y =0 lines of the pictures from Fig. 2, which are
shown in Fig. 3 for both the neutral and ionic species. This
picture further emphasizes the efficiency of the pseudorota-
tion in cyclic-N3, which occurs well above the transition
states. Moreover, it is clear that the minimum and the tran-
sition state point of neutral’s PES occur at slightly different
values of the hyperangle #: #MIN##TS. This picture also ad-
dresses a common misconception related to photoexcitation
!including photoionization" processes in the triatomic Jahn-
Teller molecules,54,55 i.e., by looking only at Fig. 3, one
could decide that the two “minima” on the left and right
sides of the conical intersection represent two different iso-
mers with somewhat different zero-point energies. Conse-
quently, one could erroneously expect that the photoelectron
spectrum should reflect this difference in the form of the
spectral peak splittings. This is certainly incorrect because,
as one can clearly see from Fig. 2, the critical point on the
left side of the conical intersection is a transition state rather
than a minimum. Besides, in cyclic-N3, due to the relatively
low transition states and high zero-point energy, each vibra-
tional wave function is highly delocalized along the hyper-
angle $ !see Fig. 1" and has nonzero density almost every-
where around the conical intersection7 !except the symmetry
imposed nodes". In fact, the zero-point energy lines on both
sides of the conical intersection !Fig. 3, lower panel" belong
to the same delocalized vibrational state. Thus, a wide range
of geometries around the conical intersection is spanned by
the ground vibrational state wave function and the term equi-
librium configuration is not applicable to cyclic-N3 mol-
ecule. The splittings can indeed occur in the spectra, how-
ever, their origin is completely different and will be
discussed in the last section of the paper.

Finally, Fig. 4 presents energies of the critical points in
the neutral and ionic species as a function of the hyper-radius
", which can be pictured as the third internal coordinate per-
pendicular to the plane of Fig. 2. One can clearly see that
both surfaces are rather anharmonic along this coordinate.
Also, the minimum point, "MIN, on PES of cyclic-N3

+ occurs
much earlier relative to the minimum energy point on neu-
tral’s PES. The corresponding zero-point energies are shown
by the dashed lines and one can see that the Franck-Condon
overlap with the vibrationally excited states of cyclic-N3

+

should certainly be larger than the overlap with its ground
vibrational state.

B. Vibrational structure of cyclic-N3
+

Tables I–III present the lowest 64, 32, and 96 eigenval-
ues of symmetries A1, A2 and E, respectively !the latter are
doubly degenerate". The energy origin is set at the bottom of
the cyclic-N3

+ well. The energy range extends up to

TABLE I. Energies, assignments, and Franck-Condon factors of the vibra-
tional states of symmetry A1 in cyclic-N3

+ molecule.

No. E !cm−1" !v1 ,v2 ,v3" !v1 ,v!" FCa

1 1 927.48 !0,0,0" !0,00" 5.64E−3
2 3 545.97 !1,0,0" !1,00" 1.63E−2
3 4 112.04 !0,1,0" !0,20" 4.36E−2
4 5 153.92 !2,0,0" !2,00" 2.62E−2
5 5 174.06 !0,0,2" !0,3+3" 1.79E−2
6 5 683.89 !1,1,0" !1,20" 9.95E−2
7 6 277.00 !0,2,0" !0,40" 5.37E−2
8 6 719.77 !1,0,2" !1,3+3" 5.51E−2
9 6 753.65 !3,0,0" !3,00" 6.97E−3
10 7 244.20 !2,1,0" !2,20" 1.01E−1
11 7 329.81 !0,1,2" !0,5+3" 1.36E−2
12 7 804.52 !1,2,0" !1,40" 9.91E−2
13 8 253.80 !2,0,2" !2,3+3" 4.12E−2
14 8 328.27 !0,0,4" !0,6+6" 3.88E−3
15 8 342.99 !4,0,0" !4,00" 4.17E−3
16 8 422.05 !0,3,0" !0,60" 1.92E−2
17 8 791.75 !3,1,0" !3,20" 7.35E−2
18 8 836.42 !1,1,2" !1,5+3" 1.39E−2
19 9 321.56 !2,2,0" !2,40" 7.67E−2
20 9 466.04 !0,2,2" !0,7+3" 3.16E−3
21 9 769.95 !3,0,2" !3,3+3" 1.56E−2
22 9 812.18 !1,0,4" !1,6+6" 8.41E−3
23 9 907.60 !1,3,0" !1,60" 2.68E−2
24 9 926.05 !5,0,0" !5,00" 2.59E−3
25 10 316.66 !2,1,2"b !2,5+3" 4.34E−2
26 10 348.23 !4,1,0"b !4,20" 4.74E−4
27 10 452.36 !0,1,4" !0,8+6" 1.45E−4
28 10 546.08 !0,4,0" !0,80" 2.77E−3
29 10 831.69 !3,2,0" !3,40" 3.75E−2
30 10 931.14 !1,2,2" !1,7+3" 2.99E−3
31 11 253.24 !2,0,4" !2,6+6" 1.80E−3
32 11 309.01 !4,0,2" !4,3+3" 7.24E−3
33 11 387.44 !2,3,0" !2,60" 1.67E−2
34 11 392.03 !0,0,6" !0,9+9" 6.14E−7
35 11 506.37 !6,0,0" !6,00" 6.74E−4
36 11 580.01 !0,3,2" !0,9+3" 2.76E−4
37 11 810.77 !3,1,2" !3,5+3" 1.30E−2
38 11 878.27 !5,1,0" !5,20" 2.45E−3
39 11 899.09 !1,1,4" !1,8+6" 8.07E−5
40 11 992.55 !1,4,0" !1,80" 3.13E−3
41 12 333.48 !4,2,0" !4,40" 1.42E−2
42 12 397.09 !2,2,2" !2,7+3" 4.38E−4
43 12 555.84 !0,2,4" !0,10+6" 3.78E−5
44 12 649.25 !0,5,0" !0,100" 1.47E−4
45 12 713.05 !3,0,4" !3,6+6" 2.62E−4
46 12 800.77 !5,0,2"b !5,3+3" 8.03E−4
47 12 829.15 !1,0,6"b !1,9+9" 2.50E−3
48 12 864.80 !3,3,0" !3,60" 5.37E−3
49 13 008.66 !1,3,2" !1,9+3" 2.18E−4
50 13 089.05 !7,0,0" !7,00" 2.31E−4
51 13 282.51 !4,1,2" !4,5+3" 2.66E−3
52 13 344.81 !2,1,4" !2,8+6" 1.31E−3
53 13 420.53 !6,0,0" !6,20" 2.55E−4
54 13 437.54 !2,4,0" !2,80" 1.46E−3
55 13 483.41 !0,1,6" !0,11+9" 3.02E−5
56 13 673.59 !0,4,2" !0,11+3" 9.37E−6
57 13 814.16 !5,2,0" !5,40" 3.81E−3
58 13 869.24 !3,2,2"b !3,7+3" 6.05E−5
59 13 965.36 !1,2,4" !1,10+6" 2.74E−5
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14 500 cm−1. In addition to the symmetry labels, we em-
ployed two more approximate assignment methods described
below.

The first method is based on counting the nodes of the
vibrational wave functions along the hyperspherical coordi-
nates ", #, and $. Although the hyperspherical coordinates
are different from the normal mode coordinates, a displace-
ment along the hyper-radius " is similar to the symmetric
stretch of the triatomic molecule, while displacements along

TABLE I. !Continued."

No. E !cm−1" !v1 ,v2 ,v3" !v1 ,v!" FCa

60 14 061.17 !1,5,0" !1,100" 1.29E−4
61 14 151.21 !4,0,4" !4,6+6" 4.12E−5
62 14 244.74 !2,0,6"b !2,9+9" 2.44E−5
63 14 315.00 !4,3,0"b !4,60" 1.81E−3
64 14 333.86 !2,3,2"b !2,9+3" 4.96E−4

aThe FC factors represent +, f *,i,2 in Eq. !9", where the initial wave function
,i describes the lowest state of symmetry A1 in the neutral cyclic-N3 mol-
ecule.
bThe states with somewhat uncertain assignments. See text for details.

TABLE II. Energies, assignments, and Franck-Condon factors of the vibra-
tional states of A2 symmetry in cyclic-N3

+ molecule.

No. E !cm−1" !v1 ,v2 ,v3" !v1 ,v!" FCa

1 5 173.13 !0,0,1" !0,3−3" 9.71E−2
2 6 719.93 !1,0,1" !1,3−3" 1.69E−1
3 7 327.30 !0,1,1" !0,5−3" 7.60E−2
4 8 253.43 !2,0,1" !2,3−3" 10.7E−1
5 8 328.42 !0,0,3" !0,6−6" 4.62E−2
6 8 830.89 !1,1,1" !1,5−3" 1.08E−1
7 9 460.71 !0,2,1" !0,7−3" 1.79E−2
8 9 769.29 !3,0,1" !3,3−3" 2.19E−2
9 9 812.18 !1,0,3" !1,6−6" 5.63E−2
10 10 324.71 !2,1,1" !2,5−3" 6.14E−2
11 10 452.57 !0,1,3" !0,8−6" 3.27E−3
12 10 923.81 !1,2,1" !1,7−3" 2.05E−2
13 11 253.09 !2,0,3" !2,6−6" 4.16E−4
14 11 308.78 !4,0,1" !4,3−3" 1.86E−2
15 11 391.57 !0,0,5" !0,9−9" 3.04E−2
16 11 573.2 !0,3,1" !0,9−3" 2.03E−3
17 11 810.91 !3,1,1" !3,5−3" 2.00E−2
18 11 895.52 !1,1,3" !1,8−6" 4.44E−3
19 12 382.03 !2,2,1" !2,7−3" 9.32E−3
20 12 554.12 !0,2,3" !0,10−6" 2.54E−4
21 12 712.50 !3,0,3"b !3,6−6" 1.97E−4
22 12 802.69 !5,0,1"b !5,3−3" 2.72E−4
23 12 829.64 !1,0,5"b !1,9−9" 1.24E−2
24 12 999.42 !1,3,1" !1,9−3" 1.65E−3
25 13 279.71 !4,1,1" !4,5−3" 3.63E−3
26 13 344.47 !2,1,3" !2,8−6" 3.29E−3
27 13 483.76 !0,1,5" !0,11−9" 5.40E−5
28 13 665.30 !0,4,1" !0,11−3" 6.08E−5
29 13 832.72 !3,2,1" !3,7−3" 2.75E−3
30 13 962.13 !1,2,3" !1,10−6" 2.10E−4
31 14 149.88 !4,0,3" !4,6−6" 5.59E−5
32 14 246.01 !6,0,1" !6,3−3" 4.10E−6

aThe FC factors represent +, f *,i,2 in Eq. !9", where the initial wave function
,i describes the lowest state of symmetry A2 in the neutral.
bThe states with somewhat uncertain assignments. See text for details.

TABLE III. Energies, assignments, and Franck-Condon factors of the vibra-
tional states of E symmetry in cyclic-N3

+ molecule.

No. E !cm−1" !v1 ,v2 ,v3" !v1 ,v!" FCa

1 3 019.41 !0,0,0" !0,1±1" 1.74E−2
2 4 105.38 !0,0,1" !0,2±2" 6.62E−3
3 4 614.40 !1,0,0" !1,1±1" 3.88E−2
4 5 194.31 !0,1,0" !0,3±1" 4.03E−2
5 5 676.25 !1,0,1" !1,2±2" 1.37E−2
6 6 197.58 !2,0,0" !2,1±1" 3.57E−2
7 6 235.48 !0,0,2" !0,4±4" 2.32E−3
8 6 275.85 !0,1,1" !0,4±2" 7.43E−3
9 6 743.52 !1,1,0" !1,3±1" 7.48E−2
10 7 235.31 !2,0,1" !2,2±2" 1.14E−2
11 7 287.49 !0,0,3" !0,5±5" 2.54E−3
12 7 350.01 !0,2,0" !0,5±1" 2.24E−2
13 7 754.66 !1,0,2" !1,4±4" 2.47E−3
14 7 774.36 !3,0,0" !3,1±1" 2.33E−2
15 7 802.91 !1,1,1" !1,4±2" 1.14E−2
16 8 280.91 !2,1,0" !2,3±1" 5.80E−2
17 8 380.85 !0,1,2" !0,6±4" 4.02E−4
18 8 426.63 !0,2,1" !0,6±2" 2.55E−3
19 8 772.70 !3,0,1" !3,2±2" 2.00E−3
20 8 797.81 !1,0,3" !1,5±5" 7.49E−3
21 8 856.39 !1,2,0" !1,5±1" 3.30E−2
22 9 265.97 !2,0,2" !2,4±4" 2.78E−4
23 9 316.67 !2,1,1" !2,4±2" 1.57E−2
24 9 336.36 !4,0,0" !4,1±1" 3.66E−3
25 9 359.50 !0,0,4" !0,7±7" 7.43E−4
26 9 422.51 !0,1,3" !0,7±5" 2.91E−4
27 9 486.02 !0,3,0" !0,7±1" 4.64E−3
28 9 806.99 !3,1,0" !3,3±1" 2.71E−2
29 9 864.58 !1,1,2" !1,6±4" 1.08E−3
30 9 911.84 !1,2,1" !1,6±2" 3.25E−3
31 10 266.28 !2,0,3" !2,5±5" 4.96E−5
32 10 326.83 !4,0,1" !4,2±2" 6.05E−3
33 10 355.39 !2,2,0" !2,5±1" 1.78E−2
34 10 380.99 !0,0,5" !0,8±8" 1.10E−3
35 10 505.53 !0,2,2" !0,8±4" 6.04E−5
36 10 554.76 !0,3,1" !0,8±2" 3.30E−4
37 10 759.55 !3,0,2" !3,4±4" 2.72E−4
38 10 821.58 !1,0,4" !1,7±7" 3.71E−4
39 10 823.55 !3,1,1" !3,4±2" 5.37E−3
40 10 886.07 !1,1,3" !1,7±5" 1.89E−3
41 10 890.99 !5,0,0" !5,1±1" 5.41E−4
42 10 952.03 !1,3,0" !1,7±1" 5.51E−3
43 11 317.8 !4,1,0" !4,3±1" 6.31E−3
44 11 350.78 !2,1,2" !2,6±4" 3.92E−3
45 11 392.13 !2,2,1" !2,6±2" 1.25E−3
46 11 473.36 !0,1,4" !0,9±7" 6.78E−7
47 11 537.85 !0,2,3" !0,9±5" 5.51E−5
48 11 602.34 !0,4,0" !0,9±1" 3.90E−4
49 11 740.67 !3,0,3" !3,5±5" 3.53E−5
50 11 820.91 !1,0,5" !1,8±8" 1.35E−4
51 11 843.55 !3,2,0" !3,5±1" 8.81E−3
52 11 864.72 !5,0,1" !5,2±2" 2.96E−4
53 11 950.38 !1,2,2" !1,8±4" 9.48E−5
54 12 000.10 !1,3,1" !1,8±2" 3.44E−4
55 12 229.50 !2,0,4" !2,7±7" 1.07E−4
56 12 294.48 !4,0,2" !4,4±4" 9.59E−6
57 12 311.71 !4,1,1" !4,4±2" 9.38E−4
58 12 358.97 !2,1,3" !2,7±5" 1.36E−3
59 12 392.94 !0,0,6" !0,10±10" 7.55E−4
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the hyperangles # and $ correspond to the bend and asym-
metric stretch, respectively. The 3D vibrational wave func-
tions for all the calculated states were plotted and are avail-
able for download as EPAPS.36 Using these 3D plots, we
assigned vibrational normal mode quantum numbers to all
the calculated states. Those assignments are given as
!v1 ,v2 ,v3"= !symmetric stretch, bend, asymmetric stretch"
in all the figures in EPAPS, in Figs. 5 and 6 below, as well as
in the third column in Tables I–III. The states of A1 symme-
try are labeled only by even v3, whereas the states of A2
symmetry are labeled only by odd v3. The states of E sym-
metry are labeled by both even and odd v3.

We will now discuss the nodal structure of the vibra-
tional wave functions of cyclic-N3

+. Figures 5 and 6 present
several typical examples, which employ 3D isosurfaces in
the hyperspherical coordinates6,7 !a diagram is given in the
top portion of Fig. 5 to facilitate the analysis". The lowest
energy vibrational state is the ground A1 state at

FIG. 5. 3D wave functions for several vibrational states of cyclic-N3
+. The

state number and its assignment in terms of !v1 ,v2 ,v3" are given for each
state. First column: progression of v1 states of A1 symmetry; second column:
progression of v2 states of A1 symmetry; third column: progression of v3
states of E symmetry. Schematic in the top of the figure is given to facilitate
analysis of the nodal structure. The hyper-radial direction " is plotted per-
pendicularly to the !X ,Y" plane. Isovalue surfaces are plotted through the
points with *,*2=0.1.

TABLE III. !Continued."

No. E !cm−1" !v1 ,v2 ,v3" !v1 ,v!" FCa

60 12 414.60 !2,3,0" !2,7±1" 2.08E−3
61 12 439.21 !6,0,0" !6,1±1" 6.95E−4
62 12 483.52 !0,1,5" !0,10±8" 8.76E−6
63 12 609.54 !0,3,2"b !0,10±4" 2.70E−6
64 12 659.26 !0,4,1" !0,10±2" 1.49E−5
65 12 796.12 !3,1,2" !3,6±4" 5.20E−04
66 12 849.29 !5,1,0"b !5,3±1" 2.48E−3
67 12 873.41 !3,2,1"b !3,6±2" 5.38E−5
68 12 900.48 !1,1,4" !1,9±7" 4.88E−5
69 12 964.48 !1,2,3" !1,9±5" 5.91E−5
70 13 032.41 !1,4,0" !1,9±1" 3.61E−4
71 13 195.36 !4,0,3" !4,5±5" 1.24E−5
72 13 274.62 !2,0,5" !2,8±8" 3.34E−6
73 13 327.78 !4,2,0" !4,5±1" 2.45E−3
74 13 383.41 !0,0,7"b !0,11±11" 2.66E−4
75 13 387.35 !6,0,1"b !6,2±2" 6.33E−4
76 13 397.19 !2,2,2" !2,8±4" 5.54E−5
77 13 444.95 !2,3,1" !2,8±2" 1.12E−4
78 13 565.55 !0,2,4" !0,11±7" 4.50E−6
79 13 632.50 !0,3,3" !0,11±5" 1.06E−6
80 13 674.84 !3,0,4" !3,7±7" 1.54E−5
81 13 700.93 !0,5,0" !0,11±1" 1.45E−5
82 13 767.39 !3,1,3" !3,7±5" 1.22E−4
83 13 768.38 !5,0,2" !5,4±4" 2.62E−6
84 13 813.17 !1,0,6" !1,10±10" 6.95E−5
85 13 838.28 !5,1,1" !5,4±2" 6.86E−4
86 13 873.23 !3,3,0" !3,7±1" 5.12E−4
87 13 895.88 !1,1,5" !1,10±8" 9.97E−6
88 13 987.44 !7,0,0" !7,1±1" 1.08E−4
89 14 019.44 !1,3,2" !1,10±4" 3.66E−6
90 14 069.16 !1,4,1" !1,10±2" 1.17E−5
91 14 243.43 !4,1,2" !4,6±4" 5.19E−5
92 14 315.79 !4,2,1" !4,6±2" 3.97E−4
93 14 325.64 !2,1,4" !2,9±7" 5.69E−6
94 14 377.33 !6,0,0" !6,3±1" 2.50E−4
95 14 397.51 !2,2,3" !2,9±5" 4.65E−6
96 14 461.01 !2,4,0" !2,9±1" 1.05E−4

aThe FC factors are calculated according to Eq. !10".
bThe states with somewhat uncertain assignments. See text for details.
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1927.48 cm−1 assigned as !0,0,0". There are no nodes in the
ground state wave function, i.e., it is basically a 3D Gauss-
ian. The first column in Fig. 5 shows a long progression of
!v1 ,0 ,0" states of A1 symmetry with 0'v1'6. Excitation of
the symmetric stretch produces nodes along the hyper-radius
and forces the wave functions to extend into the ranges of
small and large values of "; however, they still remain local-
ized around the #=0 line. The shapes of the wave functions
in this progression remain regular through the entire range
studied here. The wave function of the last of these states,
!6,0,0" at 11 506.4 cm−1, looks like a set of seven thin layers
positioned perpendicularly to the hyper-radius ". Anisotropy
along the hyperangle $ becomes already visible in the wave
function of the !2,0,0" state at 5153.92 cm−1 as a distortion
from the Gaussian-type shape towards a more triangular
shape.

The second column in Fig. 5 shows a progression of the
bending states !0,v2 ,0" of A1 symmetry with 0'v2'5. Ex-
citation of this mode produces nodes along the hyperangle #,
which appear in 3D as concentric cylindrical nodal surfaces
perpendicular to the !X ,Y" plane. These nodes push the wave
function out into the range of large # where PES is very
anharmonic. As excitation increases, the shapes of these
wave functions remain regular but start to exhibit a lot of
structure.

Finally, the third column in Fig. 5 shows a progression
of asymmetric stretching states !0,0 ,v3" of E symmetry with
0'v3'6. This progression exhibits the increasing number
of nodes along the hyperangle $ and a very regular behavior
of the wave functions. Interestingly, as v3 increases, the wave

functions in this progression move towards larger values of #
and at large values of v3 an “empty space” is produced in the
vicinity of the origin !#=0". Also, the wave functions of both
bending and asymmetric stretching states !the second and
third columns in Fig. 5" remain localized near the equilib-
rium value "eq of the hyper-radius, expanding only into the
!# ,$" plane.

An example of the combination bands is illustrated in
Fig. 6 using nine !v1 ,v2 ,1" wave functions of A2 symmetry
with 0'v1'2 and 0'v2'2. The !0,0,1" state is the lowest
A2 state and its wave function exhibits only six nodes along
$, as required by symmetry, since it should be antisymmetric
with respect to reflections through the $=0, $=120°, and
$=240° planes. Other wave functions in Fig. 6 feature su-
perposition of these nodes with the nodes in # and ". Even
the wave function of the most complex state shown here,
!2,2,1", shows very clean regular nodal structure in all three
dimensions.

Based on these 3D plots, the !v1 ,v2 ,v3" assignments are
straightforward for almost all the states except a few, in
which the structure of the vibrational wave function is com-
plicated by intermode couplings and/or interactions with
other states. Usually, such “difficult” states appear in the
groups of two or three consecutive states with the same v2
and equal values of v1+v3. Examples among the states of A1
symmetry include #25 !2,1,2" and 26 !4,1,0"; #46 !5,0,2" and
47 !1,0,6"; and #63 !4,3,0" and 64 !2,3,2". Among the states
of A2 symmetry are #21 !3,0,3", 22 !5,0,1", and 23 !1,0,5";
and #31 !4,0,3" and 32 !6,0,1". Among the states of E sym-
metry are #74 !0,0,7" and 75 !6,0,1" and some other states.
This happens because in cyclic-N3

+ the energy of one quan-
tum of excitation in v1 is very close to the energy of one
quantum of excitation in v3. Analysis of several lower states
in Tables I–III reveals that the energy difference of such
quanta varies !depending on symmetry" between only (5
and 30 cm−1. This complicates the assignments of the spec-
tra. Moreover, the assignment based on the energy quanta is
not very successful in these cases either, although the visual
representation is still useful, even though the assignment is
not immediately obvious. Assignments of the vibrational
states in terms of polyads !as described below" were quite
useful in such complicated cases.

The assignment in terms of !v1 ,v2 ,v3" is straightforward
to implement because our calculations were carried out in the
same hyperspherical coordinates. Moreover, this assignment
method enables direct comparison between the vibrational
wave functions of cyclic N3

+ and N3. This assignment method
is particularly useful !and sufficient" for any C2v triatomic
molecule with three deep, almost independent wells, when
!i" the vibrational states of E symmetry become degenerate
with the corresponding states of A1 or A2 symmetry and !ii"
the vibrational wave functions become naturally localized in
the three wells !centered at $=0, $=120°, and $=240°" and
the number of nodes along $ over each well !i.e., for each
independent isomer" has a usual meaning and is equal to the
quantum number v3. However, even in the previous study of
cyclic-N3, this method has been shown to be not quite ad-
equate because the large splittings between the states of E
and A1 or A2 symmetries !due to pseudorotation" led to re-

FIG. 6. 3D wave functions for several vibrational states of cyclic-N3
+. A

two-dimensional progression of combination states of A2 symmetry is
shown. Assignments and nodal structure analysis are as in Fig. 5. See text
for discussion.
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peating of the same !v1 ,v2 ,v3" assignments twice, and the
symmetry assignments !A1, A2, or E" were necessary in ad-
dition to the normal mode assignments. We also found that
counting the nodes over the single cyclic-N3 well is not con-
venient due to delocalization of the vibrational wave func-
tions over the three wells and the global nature of their nodal
structures. In fact, this classification scheme is even less ap-
propriate for cyclic-N3

+ that has a simple D3h well almost
isotropic along $, and we had to include one more assign-
ment method.

The vibrational states of the D3h homonuclear triatomic
molecules are often assigned in terms of triads19–22,26,27 or,
more generally, polyads. The first vibration mode in this as-
signment method is the same symmetric stretch mode char-
acterized by the same quantum number v1. Then it is as-
sumed that the two other modes are degenerate and the
energy levels !to the first order" can be described by

E!1" = -1!v1 + 1
2" + -!v + 1" , !11"

where - is the degenerate frequency and v is the composite
quantum number, which gives the total number of vibration
quanta in the two degenerate vibration modes. The third
quantum number !, which assumes values −v'!'v, is in-
troduced to show how many of these quanta contribute to the
vibrational angular momentum !pseudorotation". Thus, the
vibrational states of cyclic-N3

+ can be assigned in terms of the
polyads !v1 ,v!" where the states with the same v1 and v but
different values of ! are said to belong to the same polyad.
The number ! takes values &−v ,−v+2, . . . ,v−2,v' and each
polyad therefore contains v+1 states.

Even though this assignment method is also approxi-
mate, it has an advantage of producing unique labels for all
states of all symmetries because ! determines the symmetry
of the wave function. Namely, any two states with the same
*! * #3k !k is integer or zero" constitute a strictly degenerate
pair of E-symmetry states. The “.” and “/” signs denote
symmetric and antisymmetric states, respectively. The states
with *! * =3k transform according to A symmetry, with the
“.” sign used for symmetric !A1-symmetry" states and the
“/” sign for antisymmetric !A2-symmetry" states. Since the
pseudorotation motion occurs along the hyperangle $, the
positive number *!* gives the number of nodal surfaces and
2( *!* gives the number of nodes found along $ in the entire
physical range of 0'$'360°. This method can be used
even if PES is not purely harmonic and the two vibration
modes are not exactly degenerate; however, some splitting
between the different ! states will be observed. When anhar-
monicities are taken into account to the second order of per-
turbation theory,56 the energy spectrum is described by

E!2" = -1!v1 + 1
2" + -!v + 1" + 01!v1 + 1

2"2 + 0!v + 1"2

+ *!v1 + 1
2"!v + 1" + g!!"2. !12"

The above expression has a second order dependence on *!*,
but no dependence on the sign of ! !i.e., no splitting between
the states of A1 and A2 symmetries".

Having assigned all the states of A1, A2, and E symme-
tries in terms of !v1 ,v2 ,v3", it is now straightforward to as-
sign all the states in terms of !v1 ,v!". These assignments are

given in the fourth column of each table and in all the figures
in the EPAPS submission.36 Also included with the EPAPS
submission. is the table in which all the states of all symme-
tries are combined and arranged according to the polyads
!i.e., the states with the same v1 and v are grouped together",
to simplify data analysis and fitting.

Below we describe the major features of the vibrational
spectra in the cyclic-N3

+. The spacing between the vibrational
polyads is rather large. In the energy range studied here,
different polyads with the same quantum number v1 do not
overlap; different polyads with the same quantum number v
do not overlap either. Neighboring polyads with the same
total number of quanta v1+v and *v1=*v=1 do not overlap
too. The first overlap is found between the !3,1" polyad at
7774.4 cm−1 and !1,4" polyad. The next one is between !4,0"
polyad at 8343.0 cm−1 and !0,6" polyad. Several more ex-
amples of this kind, when a !large v1, small v" polyad over-
laps with a !small v1, large v" polyad, can be found above
10 000 cm−1. Within the polyads, energies of the vibrational
states drop as *!* increases in most cases. This suggests that
in cyclic-N3

+ excitation of the bending motion requires
slightly less energy than the excitation of the pseudorota-
tional motion. Exceptions to this rule are found only in the
polyads with v=6, 8, and 10; there the !=0 states are always
below the !±2 states.

Within the polyads, splittings between the states with
equal values of *!* but opposite signs are relatively small and
are less or about 1 cm−1 in most cases. Only a few excep-
tions are found at energies above 10 000 cm−1. For example,
splittings of about 10 cm−1 are found between !2,5−3" and
!2,5+3", !1,9−3" and !1,9+3", and !0,11−3" and !0,11+3"
states. The two largest splittings of this kind are 15.0 cm−1

between !2,7−3" and !2,7+3" states, and 36.5 cm−1 between
!3,7−3" and !3,7+3" states; however, these pairs lie at rela-
tively high energies: 12 382.0 and 13 832.7 cm−1, respec-
tively. Furthermore, the !3,7+3" state is among those states
that were difficult to assign due to its mixing with other
states, which partially explains such a large splitting. Note
that this kind of splitting occurs between the states of A1 and
A2 symmetries, which have the same number of quanta of
every kind and the same number of nodes along each coor-
dinate. The difference is that at $=0, 120°, and 240° the
wave functions of A1 symmetry exhibit maxima, whereas
those of A2 symmetry exhibit nodes. Thus, the overall shapes
of the wave functions are very similar, however, one is ro-
tated by *$=60° with respect to another #see EPAPS !Ref.
36"$. If PES were exactly isotropic along the hyperangle $
the wave functions would yield equal expectation values for
energies, but some $ dependence in PES results in small
splitting of these states. Note that this kind of splitting is not
present in the spectrum of Eq. !12".

Within the polyads, splittings between the states with
different *!* are somewhat larger. The lowest energy example
is a splitting of 6.7 cm−1 between !0,20" state and !0,2±2"
exactly degenerate state. Remember that the first of these
states is of A1 symmetry and the second state is of E sym-
metry. Their wave functions exhibit very different nodal
structures #see EPAPS !Ref. 36"$ and this splitting is not
surprising, even at low energies. The splitting can even be
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larger when the same polyad contains two !or more" con-
secutive states of the same symmetry. The lowest energy
example of this kind is a splitting of 40.4 cm−1 between
!0,4±2" and !0,4±4" states of E symmetry at 6235.5 cm−1.
The first example of three consecutive states of E symmetry
occurs in !0,7" polyad, and so on. For many polyads at en-
ergies near 10 000 cm−1 the values of such splittings average
at 50 cm−1 and exceed 100 cm−1 for several higher energy
polyads.

Splittings of the latter kind !i.e., between the states with
different *!*" can be reproduced by an approximate spectrum
of Eq. !12" and we used this formula to fit our results. We
fitted only a part of the spectrum below 10 000 cm−1; this
includes 63 states of all symmetries, which constitute 27
lowest energy polyads. No weighting function was used. Re-
sults of the fit for frequencies and anharmonicities
in Eq. !12" are -1=1654.95 cm−1, -=1114.18 cm−1,
01=−5.53 cm−1, 0=−2.31 cm−1, *=−23.94 cm−1, and
g=−2.76 cm−1. The standard deviation of the fit was
6.13 cm−1. One could expect that the symmetric stretching
mode is more anharmonic, however the fit shows that both
intramode anharmonicities !01 and 0" are relatively small for
this molecule. The pseudorotational anharmonicity parameter
g is also small. However, the fitted value of the intermode
anharmonicity * is found to be quite large. These data can be
used for qualitative analysis of the spectra.

C. Photoelectron spectra of cyclic-N3

The fifth column of Tables I–III summarizes the FC fac-
tors. Their analysis is rather straightforward: The largest fac-
tors occur for those final states , f characterized by small
quantum number !. For example, among the states of A1
symmetry these are !1,20", !2,20", and !1,40"; among the
states of A2 symmetry we find larger factors for !1,3−3",
!2,3−3", and !1,5−3"; among the E-symmetry states, for
!0,3±1", !1,3±1", and !2,3±1". This is simply because the
initial states ,i of the neutral cyclic-N3 are also characterized
by small quantum number !: in terms of the polyads they
would be assigned as !0,00", !0,3−3", and !0,1±1". These are
the lowest states of A1, A2, and E symmetries, respectively,
and their wave functions contain the minimal number of
nodes in $. More $ nodes in the final state leads to signifi-
cant cancellations in the integral over $ in Eq. !9" and results
in a smaller overlap. The largest FC factor is 0.169 for state
!1,3−3" of A2 symmetry. More than ten other FC factors ap-
proach 0.1 and the corresponding states always lie in the
energy range between 5000 and 10 000 cm−1. Also, note that
such states most often contain one or two quanta of v1 re-
quired to reach the favorable Franck-Condon region in ", as
also follows from Fig. 4.

Figure 7!a" shows intensities of the main E!→E" band
of the photoelectron spectrum. The reference point !zero" in
this plot corresponds to the minimum energy point of PES
for ionic cyclic-N3

+, which is 10.356 eV above the ground
vibrational state of neutral cyclic-N3. A nice progression of
!= ±1 states can be easily identified:

!0,1±1", !0,3±1", !0,5±1";

!1,1±1", !1,3±1", !1,5±1";

!2,1±1", !2,3±1", !2,5±1";

!3,1±1", !3,3±1", !3,5±1";

as well as several less intense != ±2 states:

!0,2±2", !0,4±2";

!1,2±2", !1,4±2";

!2,2±2", !2,4±2" .

These progressions should be clearly seen in the experiment.
The most intense peak corresponds to !1,3±1" state with no
other peaks within about ±500 cm−1. The vibrational wave
function of this final state is shown in Fig. 1, along with the
wave function of the initial, ground vibrational state of
cyclic-N3. All other intense peaks at energies above
6000 cm−1 are surrounded by several relatively close less
intense peaks, which most often originate from E-symmetry
states of the same polyad with != ±2 or larger !although
sometimes from the states of other energetically close poly-

FIG. 7. !Color" Theoretically predicted photoelectron spectra of cyclic-N3.
!a" Main band of E!→E" transitions; !b" hot bands of A1!→A1" transitions
!blue", A2!→A2" transitions !green", and E!→E" transitions !red". See text for
description of the initial states. Final state labels in terms of polyads !v1 ,v!"
are given for several most intense peaks.
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ads". In the experiment, where apparatus broadening is
present, this group of peaks can appear as a broader peak
with several splittings. Due to uncertainties in the electronic
structure calculations !about 2%, as suggested by the error
bars for harmonic frequencies", these progressions may shift
relative to each other. However, since the separations be-
tween the main peaks are about 500 cm−1, even the shifts of
about 100 cm−1 will not cause qualitative changes in the
spectrum.

Note that the broad spectrum of cyclic-N3 #Fig. 7!a"$
differs dramatically from that of the linear trinitrogen
isomer,57,58 which has only one intense peak in this energy
range because of the similarity in the equilibrium structures
of the neutral and ionized species. On the scale of Fig. 7!a"
this single peak would appear at about 5680 cm−1.57,59 The
ionization potential !IP" of the linear isomer is 11.06 eV,57

which is 0.44 eV higher than the IP of the cyclic form.14

These differences in IP and the shape of the photoelectron
spectra should help to distinguish the two isomers simulta-
neously present in the experimental molecular beam.1–3,9–11

Further complexity in the photoelectron spectrum of
cyclic-N3 is brought by its hot bands: A1!→A1" and A2!→A2"
and the hot E!→E", shown collectively in Fig. 7!b". Here
the most intense peaks belong to the coldest A1!→A1" band.
Among them the most pronounced are the !=0 peaks:

!0,20", !0,40";

!1,20", !1,40", !1,60";

!2,20", !2,40";

but also several != +3 peaks:

!0,3+3", !0,5+3";

!1,3+3", !1,5+3";

!2,3+3", !2,5+3" .

Due to the low nuclear spin factor the peaks of A2!→A2" band
are even less intense than the peaks of the hotter E!→E"
band. Since the initial state for this hot E band is the first
excited state of E symmetry in cyclic-N3 assigned as !0,2±2",
the most intense peaks here describe transitions to != ±2
states of cyclic-N3

+. This is the same progression of != ±2
states given above, although the peaks of the hot bands do
not occur near the peaks of the cold band, which belong to
the same polyad, as they are shifted by the vibrational exci-
tation energy of the initial vibrational states in the cyclic-N3.
If both frames of Fig. 7 are superimposed, the resulting spec-
trum !192 peaks total" becomes rather complicated. This sug-
gests that it would be much easier to identify the cyclic-N3
molecules in the experiment where these molecules are pro-
duced vibrationally cold and are spectroscopically character-
ized while they remain cold, so that only the main E!→E"
band of Fig. 7!a" is observed.

IV. CONCLUSIONS

We presented PES and vibrational wave functions of
cyclic-N3

+. High level ab initio calculations were carried out

to obtain energies of the points on a three-dimensional grid
and a spline interpolation of these data was used to construct
accurate representation of the potential energy surface em-
ploying hyperspherical coordinates. The vibrational state en-
ergies and wave functions were calculated in the energy
range up to 14 500 cm−1, taking into account all couplings
present in PES and full dimensionality of the problem. All
the states were assigned and the spectrum was fitted with a
simple analytic expression for the vibrational polyads. To
predict intensities in the photoelectron spectrum of cyclic-
N3, the Franck-Condon overlaps were computed between
these states and several low energy states of the neutral
cyclic-N3. The geometric phase effects in cyclic-N3 were in-
cluded by using the initial vibrational wave functions ob-
tained from the gauge theory. The most important conse-
quence of the geometric phase is the reversal of state
symmetries and appearance of E!→E" transitions in the
main photoelectron band, with A1!→A1" transitions forming
the most intense of hot bands. Intensities of the photoelec-
tron peaks reflect the nodal structure of the initial and final
vibrational wave functions.

The photoelectron spectra of cyclic-N3 should provide
the structural information about both species: neutral cyclic-
N3 and ionic cyclic-N3

+, due to the fact that several low lying
vibrational states of cyclic-N3 molecule are populated in the
experimental conditions and the hot bands are produced
when those states are photoionized. Theoretical predictions
of the peak intensities reported here should facilitate the
analysis of the experimental results.

From the theory perspective, this work suggests further
developments. First of all, predictions of peak intensities
could be refined by computing the dipole moment function
and using the first expression of Eq. !9", in order to fully
incorporate the geometric phase effects in the spectrum cal-
culations. Similar calculations of the infrared line intensities
of cyclic-N3 are underway.13 Moreover, the excited elec-
tronic states of cyclic-N3

+ that lie in the range of 5–8 eV
above the energy of the ground electronic state14 can be in-
cluded in the modeling of the spectrum as well. We plan to
pursue such calculations in the future.
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